Problem-Solving Tip: When cutting an FBD through an axial member, assume that the internal force is tension and draw the force arrow directed away from the cut surface. If the computed internal force value turns out to be a positive number, then the assumption of tension is confirmed.
Answer:
Q = 63,827.5 W
Explanation:
Given:-
- The dimensions of plate A = ( 10 mm x 1 m )
- The fluid comes at T_sat , 1 atm.
- The surface temperature, T_s = 75°C
Find:-
Determine the total condensation rate of water vapor onto the front surface of a vertical plate
Solution:-
- Assuming drop-wise condensation the heat transfer coefficient for water is given by Griffith's empirical relation for T_sat = 100°C.
h = 255,310 W /m^2.K
- The rate of condensation (Q) is given by Newton's cooling law:
Q = h*As*( T_sat - Ts )
Q = (255,310)*( 0.01*1)*( 100 - 75 )
Q = 63,827.5 W
Answer:
QPSK: 7.5 MHz
64-QAM:2.5 MHz
64-Walsh-Hadamard: 160 MHz
Explanation:
See attached picture.
Answer:
3270 N/m^2
Explanation:
we can calculate the pressure difference between the bottom and surface of the tank by applying the equation for the net vertical pressure
Py = - Ph ( g ± a )
for a downward movement
Py = - Ph ( g - a ) ------ ( 1 )
From the above data given will be
p = 1000 kg/m^3, h = 2/3 * 0.5 = 0.33 m , a =2g , g = 9.81
input values into equation 1 becomes
Py = -Ph ( g - 2g ) = Phg ------ ( 3 )
Py = 1000 * 0.33 * 9.81
= 3270 N/m^2
Given Information:
Initial temperature of aluminum block = 26.5°C
Heat flux = 4000 w/m²
Time = 2112 seconds
Time = 30 minutes = 30*60 = 1800 seconds
Required Information:
Rise in surface temperature = ?
Answer:
Rise in surface temperature = 8.6 °C after 2112 seconds
Rise in surface temperature = 8 °C after 30 minutes
Explanation:
The surface temperature of the aluminum block is given by

Where q is the heat flux supplied to aluminum block, k is the conductivity of pure aluminum and α is the diffusivity of pure aluminum.
After t = 2112 sec:

The rise in the surface temperature is
Rise = 35.1 - 26.5 = 8.6 °C
Therefore, the surface temperature of the block will rise by 8.6 °C after 2112 seconds.
After t = 30 mins:

The rise in the surface temperature is
Rise = 34.5 - 26.5 = 8 °C
Therefore, the surface temperature of the block will rise by 8 °C after 30 minutes.