Answer:
c and d are correct
Explanation:
In A, false because in Valence Electrons, the more the valences, the more stable an atom is.
In B, false because atoms cannot readily gain or lose valence electrons as the number of valence electrons is determined by the column they are in.
In C, true because the more the valence electrons, the more the stability of an atom.
In D, true as electron placing is important and the reactivity of an atom is important.
So C and D are true!
<span>The thermodynamic determines the amount of chemical energy a substance has.</span>
<span>Answer:
Nothing is balanced in your final equation: not H, not O, not Cr, not I and your charges aren't either.
Start with your 2 half reactions:
I- --> IO3-
Cr2O72- --> 2 Cr3+
Balance O by adding H2O:
I- + 3 H2O --> IO3-
Cr2O72- --> 2 Cr3+ + 7H2O
Balance H by adding H+:
I- + 3 H2O --> IO3- + 6 H+
Cr2O72- + 14 H+ --> 2 Cr3+ + 7H2O
Balance charge by adding e-:
I- + 3 H2O --> IO3- + 6 H+ + 6 e-
Cr2O72- + 14 H+ + 6 e- --> 2 Cr3+ + 7H2O
Since the numbers of electrons in your two half reactions are the same, just add them and simplify to give:
Cr2O72- + I- + 8 H+ --> IO3- + 2 Cr3+ + 4 H2O</span>
Answer:
A covalent chemical bond is one in which <u>outer-shell electrons of two atoms are shared so as to satisfactorily fill their respective orbitals</u>.
Explanation:
Covalent bonds are formed between two atoms having their electronegativity difference less than 1.7. In this type of bonding the valence electrons of one atoms forms molecular bond with the valence electrons of another atom. The electrons are mutually shared.
Covalent bond can be non-polar as for example formed between hydrogen and carbon atoms.
Also, covalent bond can be polar in nature as that formed between hydrogen and chlorine atoms because the chlorine atom is more electronegative and hence attracts the electrons more towards itself making density of electrons less on hydrogen atom.