Answer:
(B) The correct interpretation of this interval is that 90% of the students in the population should have their scores improve by between 72.3 and 91.4 points.
Step-by-step explanation:
Confidence interval is the range the true values fall in under a given <em>confidence level</em>.
Confidence level states the probability that a random chosen sample performs the surveyed characteristic in the range of confidence interval. Thus,
90% confidence interval means that there is 90% probability that the statistic (in this case SAT score improvement) of a member of the population falls in the confidence interval.
1200 - 450 = 750 liters that he needs to fill up
81.5 x 750 = €61,125
€61,125 x 0.075 = €4,584.38 (discount as a loyal customer)
total paid with discount = €61,125 - €4,584.38 = €56,540.62
answer
Mr. Leonard gets €4,584.38 discount on his purchase
Answer:
okay...... where is the question
Answer:- a.The given expression is equivalent to 
Given expression:- ![[\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}}]^{-2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B%283xy%5E%7B-5%7D%29%5E3%7D%7B%28x%5E%7B-2%7Dy%5E2%29%5E%7B-4%7D%7D%5D%5E%7B-2%7D)
![=[\frac{(3)^3x^3y^{-5\times3}}{x^{-2\times-4}y^{2\times-4}}]^{-2}.........(a^m)^n=a^{mn}](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B%283%29%5E3x%5E3y%5E%7B-5%5Ctimes3%7D%7D%7Bx%5E%7B-2%5Ctimes-4%7Dy%5E%7B2%5Ctimes-4%7D%7D%5D%5E%7B-2%7D.........%28a%5Em%29%5En%3Da%5E%7Bmn%7D)
![=[\frac{27x^3y^{-15}}{x^8y^{-8}}]^{-2}](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B27x%5E3y%5E%7B-15%7D%7D%7Bx%5E8y%5E%7B-8%7D%7D%5D%5E%7B-2%7D)
![=[27x^{3-8}y^{-15-(-8)}]^{-2}............\frac{a^m}{a^n}=a^{m-n}](https://tex.z-dn.net/?f=%3D%5B27x%5E%7B3-8%7Dy%5E%7B-15-%28-8%29%7D%5D%5E%7B-2%7D............%5Cfrac%7Ba%5Em%7D%7Ba%5En%7D%3Da%5E%7Bm-n%7D)
![=[27x^{-5}y^{-7}]^{-2}=(27)^{-2}(x^{-5})^{-2}(y^{-7})^{-2}.........(a^m)^n=a^{mn}](https://tex.z-dn.net/?f=%3D%5B27x%5E%7B-5%7Dy%5E%7B-7%7D%5D%5E%7B-2%7D%3D%2827%29%5E%7B-2%7D%28x%5E%7B-5%7D%29%5E%7B-2%7D%28y%5E%7B-7%7D%29%5E%7B-2%7D.........%28a%5Em%29%5En%3Da%5E%7Bmn%7D)

Thus a. is the right answer.