Answer:
(A) Th = 818.6 K
(B) Qh = 14211.7 J
Explanation:
efficiency (n) = 0.537
temperature of cold reservoir (Tc) = 379 K
heat rejected (Qc) = 6580 J
(A) find the temperature of the hot reservoir (Th)
n = 1 - 
0.537 = 1 -
= 1 - 0.537 = 0.463
Th =
Th = 818.6 K
(B) what amount of heat is put into the engine (Qh) ?
from 
Qh = 6580 ÷ 
Qh = 14211.7 J
The sleds speed when the spring returns toits uncompressed length is v = 0.03 m/s.
<u>Explanation</u>:
Given,
force constant = 42 N/cm = 0.42 N/m, mass m = 68 kg, spring x = 0.39 m
The potential energy, U, stored in the spring is
U = 1/2 kx^2
= 1 / 2
0.42
(0.39)^2
= 0.032 J
All its potential energy has been converted into kinetic energy since it has a uncompressed length.
K = 1/2 mv^2
v = sqrt (2K / m)
= √(( 2
0.032) / 68)
v = 0.03 m/s
.
When an object moves its length contracts in the direction of motion. The faster it moves the shorter it gets in the direction of motion.
The object in this question moves and then stops moving. So it's length first contracts and then expands to its original length when the motion stops.
The speed doesn't have to be anywhere near the speed of light. When the object moves its length contracts no matter how fast or slow it's moving.
Answer:
Weight required = 194.51 N
Explanation:
The elongation is given by

Length , L= 1.6 m
Diameter, d = 1.1 mm
Area

Change in length, ΔL = 2.8 mm = 0.0028 m
Young's modulus of copper, E = 117 GPa = 117 x 10⁹ Pa
Substituting,

Weight required = 194.51 N