Answer:
I think the answer is, 100.
Explanation:
but i dont know try
The information that should be added to the chart in order to find out who ran a greater distance is THE UNITS USED TO MEASURE DISTANCE EACH DAY.
In science, the use of units if very important and each record made must be accompany with relevant units that are appropriate for the measurement taken. If units are not used along with data, it will be very difficult to quantify the values that are recorded. Scientists all over the world use SI units in their works in order to ensure uniformity.
C. The number of moles of H in 0.109 mole of N₂H₄ is 0.436 mole
D. The number of moles of H in 34 moles of C₁₀H₂₂ is 748 moles
<h3>C. How to determine the number of mole of H in 0.109 mole of N₂H₄</h3>
1 mole of N₂H₄ contains 4 moles of H
Therefore,
0.109 mole of N₂H₄ will contain = 0.109 × 4 = 0.436 mole of H
<h3>D. How to determine the number of mole of H in 34 mole of C₁₀H₂₂</h3>
1 mole of C₁₀H₂₂ contains 22 moles of H
Therefore,
34 mole of C₁₀H₂₂ will contain = 34 × 22 = 748 mole of H
Learn more about mole:
brainly.com/question/13314627
#SPJ1
Answer:
According to Coulomb’s law, the Ca and Se ions have 4 times the attractive force (2+ × 2-) than that of the K and Br ions (1+ × 1-).
Explanation:
From Coulomb's law, the attractive force between calcium and selenium ions is four times the attractive force between potassium and bromide ions.
This has something to do with size and magnitude of charge. Calcium ions and selenide ions are smaller and both carry greater charge magnitude than potassium and bromide ions. This paves way for greater electrostatic attraction between them when the distance of the charges apart is minimal. Hence a greater lattice energy.
The statement which is true is
metals lose electrons to become cations
<u><em>Explanation</em></u>
- metals tends to loss electrons to attain noble gas electrons configuration.
- When metal loses electrons they form a positive charged ions.
- The positively charged ion is known as cations.
- for example sodium metal (Na) loses 1 electron to form a cation with a charge of positive 1 ( Na^+)