Answer: 41.5 mL
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
Given : 59.4 g of
in 100 g of solution
moles of 
Volume of solution =
Now put all the given values in the formula of molality, we get

To calculate the volume of acid, we use the equation given by neutralisation reaction:

where,
are the molarity and volume of stock acid which is 
are the molarity and volume of dilute acid which is 
We are given:

Putting values in above equation, we get:

Thus 41.5 mL of the solution would be required to prepare 1550 mL of a .30M solution of the acid
With every electron stationed in its own orbital or paired off with each other in the higher energy level, the energy level is balanced and stable. The atoms that utilize this exception are Molybdenum, Chromium, Gold, Silver, and Copper.
Moles of electrons:
The moles of electrons that are transferred are 12F
A balanced equation:
2 moles of Aluminium metal react with excess copper(II) nitrate.

Given:
Moles of Aluminium = 2
As Aluminium goes from 0 to +3 oxidation state

And copper goes from +2 to 0

On balancing the number of electrons we get:
For 1 mole of Al
is required.
Therefore for 2 moles of Al,
Total
F mole of electrons
Where F= Faraday's constant= 96500 C
So, 12F moles of electrons are transferred.
Learn more about Faraday's Law here,
brainly.com/question/27985929
#SPJ4
<span>The pressure inside a coke bottle is really high. This helps keep the soda carbonated. That is, the additional pressure at the surface of the liquid inside the bottle forces the bubbles to stay dissolved within the soda. </span><span>When the coke is opened, there is suddenly a great pressure differential. The initial loud hiss that is heard is this pressure differential equalizing itself. All of the additional pressure found within the bottle pushes gas out of the bottle until the pressure inside the bottle is the same as the pressure outside the bottle. </span><span>However, once this occurs, the pressure inside the bottle is much lower and the gas bubbles that had previously been dissolved into the soda have nothing holding them in the liquid anymore so they start rising out of the liquid. As they reach the surface, they pop and force small explosions of soda. These explosions are the source of the popping and hissing that continues while the soda is opened to the outside air. Of course, after a while, the soda will become "flat" when the only gas left dissolved in the liquid will be the gas that is held back by the relatively weak atmospheric pressure.</span>
The true statement is that after reaching equilibrium, the rate of forming products and reactants is the same.
<h3>What is true about the given reaction?</h3>
The given reaction shows a reaction between A and B to form CD
The reaction is a reversible reaction.
A reversible reaction is a reaction which can proceed in either of two ways where the reactants can react to form the product and also the products an break down to form the reactants.
In the reaction given, as the concentration of A and b decreases, the concentration of CD increases and vice versa.
At equilibrium, the rate of formation of CD is equal to the the rate of decomposition of CD.
Therefore, the true statement is that after reaching equilibrium, the rate of forming products and reactants is the same.
In conclusion, a reaction at equilibrium has the forward and backward reactions occurring at the sane rate.
Learn more about equilibrium reaction at: brainly.com/question/18849238
#SPJ1