They must have the same number of protons
Answer:
A) Dilute the unknown so that it will have an absorbance within the standard curve. Once the diluted unknown concentration is determined, the full strength concentration can be calculated if the dilution process is recorded. Beer's law only applies to dilute solutions, so diluting the unknown is better than making new standards.
Explanation:
Beer's law states that <em>absorbance is proportional to the concentrations of the absorbing species</em>. This is verified in the case of diluted solutions (0≤0.01 M) of most substances. <u>As a solution gets more concentrated, solute molecules interact between themselves because of their proximity. </u>When a molecule interacts with another, the change in their electric properties (including absorbance) is probable. That's why <u>the plot of absorbance versus concentration stops being a straight line</u>, and <u>Beer's law is no longer valid.</u>
Therefore, if the absorbance value is higher than the highest standard, dilutions should be made. Once this concentration is determined, the full strength concentration can be calculated with the inverse of the dilution.
Look at the periodic table to find the charge on atoms.
Magnesium is +2 and Nitrogen is -3. Since there are two nitrogen charge 2*-3 = -6 there needs to be 3 Mg then (3*2+ = 6+) to pair with the two nitrogen.
3 Mg(+2) + 2 N(-3) = Mg3N2
Answer:
Sodium Chloride has Ionic bond while Hydrogen Chloride has covalent bond.
Explanation:
Na has 11 electrons (2, 8, 1) and need to give away 1 electron to be stable
Cl has 17 electrons ( 2, 8, 7) and needs 1 electron to be stable.
Na transfers 1 electron to CL to form Ionic bond.
While
Hydrogen has 1 electron and shares with Chlorine to be stable.
Covalent bond involves sharing.