Answer:
You
Explanation:
Will have to fill in the graph organizer with a story
<u>Answer:</u> The value of
is 0.136 and is reactant favored.
<u>Explanation:</u>
Equilibrium constant in terms of concentration is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the chemical reaction between carbon monoxide and hydrogen follows the equation:

The expression for the
is given as:
![K_{c}=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_%7Bc%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
We are given:
![[NH_3]=0.25M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.25M)
![[H_2]=0.75M](https://tex.z-dn.net/?f=%5BH_2%5D%3D0.75M)
![[N_2]=1.1M](https://tex.z-dn.net/?f=%5BN_2%5D%3D1.1M)
Putting values in above equation, we get:


There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium.
For the given reaction, the value of
is less than 1. Thus, the reaction is reactant favored.
Hence, the value of
is 0.136 and is reactant favored.
Answer:
The molar solubility of YF₃ is 4.23 × 10⁻⁶ M.
Explanation:
In order to calculate the molar solubility of YF₃ we will use an ICE chart. We identify 3 stages: Initial, Change and Equilibrium and we complete each row with the concentration of change of concentration. Let's consider the solubilization of YF₃.
YF₃(s) ⇄ Y³⁺(aq) + 3 F⁻(aq)
I 0 0
C +S +3S
E S 3S
The solubility product (Ksp) is:
Ksp = [Y³⁺].[F⁻]³= S . (3S)³ = 27 S⁴
![S=\sqrt[4]{Ksp/27} =\sqrt[4]{8.62 \times 10^{-21} /27}=4.23 \times 10^{-6}M](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B4%5D%7BKsp%2F27%7D%20%3D%5Csqrt%5B4%5D%7B8.62%20%5Ctimes%2010%5E%7B-21%7D%20%20%2F27%7D%3D4.23%20%5Ctimes%2010%5E%7B-6%7DM)
Answer:
2. LiOH
Explanation:
An Arrhenius base is a substance or chemical compound which increases the number of OH- ions when added in water.
LiOH or lithium hydroxide is one of the strong Arrhenius base as it ionizes completely or near-completely in solution. When LiOH is added to water , it dissociates into lithium (Li+) and hydroxide (OH−) ions.
Hence, the correct answer is 2. LiOH.