Answer:
a) v₀ₓ = 62.76 m / s, b) θ₁ = 17.6º, θ₂ = 67.0º
Explanation:
We can solve this exercise using the projectile launch ratios
a) Let's find the time it takes for the bullet to reach the water level
y = y₀ + v_{oy} t - ½ g t²
when it reaches the water its height is zero y = 0, as the bullet is fired horizontally its initial vertical velocity is zero
0 = y₀ + 0 - ½ g t²
t =
t =
t = 1,195 s
now we can calculate the speed with the horizontal movement
x = v₀ₓ t
v₀ₓ = x / t
v₀ₓ = 75.0 / 1.195
v₀ₓ = 62.76 m / s
b) if the speed of the bullets is half of that found
v₀ = 62.76 / 2 = 31.38 m / s
let's write the expressions for the distance
x = v₀ cos θ t
y = y₀ + v_{oy} sin θ t - ½ g t²
t =
we substitute
let's use the identified trigonometry
sec² θ = 1 + tan² θ
sec θ = 1 / cos θ
we substitute
we change variable
tan θ = H
we subtitle the values
27.99 H² - 75 H + 20.99 = 0
H² - 2.679 H + 0.75 = 0
we solve the quadratic equation
H = [2.679 ±
] / 2
H = [2,679 ± 2,044] / 2
H₁ = 0.3175
H₂ = 2.3615
now we can find the angles
H₁ = tan θ₁
θ₁ = tan⁻¹ H₁
θ₁ = tan⁻¹ 0.3175
θ₁ = 17.6º
θ₂ = 67.0º
for these two angles the bullet hits the boat