1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
3 years ago
12

I need help with this please thank you!

Physics
1 answer:
Tresset [83]3 years ago
8 0

D. A beam balance does not measure mass; it measures weight. The gravitational force of attraction between the earth and an object depend on the mass of the object. ... The beam balance measures the force F exerted by the mass on the beam balance

You might be interested in
A 300 gg ball on a 70-cmcm-long string is swung in a vertical circle about a point 200 cmcm above the floor. The string suddenly
Ratling [72]

Answer:

the   tension in the string an instant before it broke = 34 N

Explanation:

Given that :

mass of the ball m = 300 g = 0.300 kg

length of the string r = 70 cm = 0.7 m

At highest point, law of conservation of energy can be expressed as :

\frac{1}{2} mv^2 = mgh\\\\v = \sqrt{2gh}\\\\v = \sqrt{2*(9.8 \  m/s^2)*(6.00 \ m - 2.00 \ m)}\\\\

v = 8.854 \ m/s

The tension in the string is:

T = \frac{mv^2}{r}\\\\T = \frac{(0.300 \ kg)*(8.854 \ m/s^2)}{0.70 \ m}\\\\T = 33.59 N\\\\T = 34 \ N

Thus, the   tension in the string an instant before it broke = 34 N

6 0
3 years ago
When you stand on tiptoes on a bathroom scale, there is an increase in
pychu [463]

Answer:

B) Pressure on the scale, not registered as weight.

Explanation:

This is because energy (derived from weight) becomes compiled on the tips of your toes, and therefore does not increase your weight, but simply the pressure at a smaller point

3 0
3 years ago
A 50.0 kg woman climbs a flight of stairs 6.00 m high in 15.0 s. How much power does she use.
WITCHER [35]

Her weight = (mass) · (gravity) = (50kg) · (9.8 m/s²)

Work = (weight) · (height) = (50kg) · (9.8 m/s²) · (6 m)

Power = (work) / (time) = (50kg) · (9.8 m/s²) · (6 m) / (15 s)

Power = (50 · 9.8 · 6 / 15) · (kg · m² / s³)

Power = 196 (kg · m / s²) · (m) / s

Power = 196 Newton-meter/second

<em>Power = 196 watts</em>

6 0
3 years ago
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
Need help ASAP please Thanks
Karo-lina-s [1.5K]
Answer: D
Explanation: there is less light at that point.
3 0
3 years ago
Other questions:
  • The image of a distant tree is virtual and very small when viewed in a curved mirror. The image appears to be 22.9 cm behind the
    11·2 answers
  • A 5.5kg mass is pushed with a force of 31N across a table having μk of 0.350. Find how fast it will accelerate, taking friction
    9·1 answer
  • 43.278 kg - 28.1 g use significant figures rule
    8·1 answer
  • Under what conditions would a rope remain in equilibrium during a tug of war
    9·2 answers
  • In the theory of plate tectonics, various segments of Earths crust, called plates, move toward and away from each other. In one
    6·1 answer
  • If there is a current of 15A in a circuit for 5 minutes, what quantity of electric charge flow through the circuit?
    7·1 answer
  • Suppose there is a sample of xenon in a rectangular container. The gas exerts a total force of 4.47 N perpendicular to one of th
    8·1 answer
  • The lowest note on a piano
    15·1 answer
  • Which is the most likely location in the home for mold growth? A) bathroom windows B) living room furniture C) computer keyboard
    11·2 answers
  • An object of mass 100kg is moving with a velocity of 5m/s. Calculate the kinetic energy of that object
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!