To solve the problem, we must use the following equation:

where
Q is the amount of heat energy absorbed by the water
m is the mass of the water
Ti and Tf are the initial and final temperature
Cs is the specific heat capacity of the water
The data we have in this problem are:
Q=40.0 kJ


m=0.500 kg
Substituting the data into the equation and re-arranging it, we find

So the final temperature of the water will be 29.1 degrees.
Answer:

so gravity will be same as that of surface of earth
Explanation:
As we know that the acceleration due to gravity is given as

here we have


we know that for earth we have

now if the radius and mass is given as above



so gravity will be same as that of surface of earth
Answer:
T = 0.01 s
Explanation:
Given that,
The frequency of the beats of a hummingbird, f = 100 Hz
We need to find the period of the hummingbirds flaps. Let the time is t. We know that the relation between frequency and time period is given by :
T = 1/f
Put all the values,
T = 1/100 = 0.01 s
So, the time period of the humming bird is 0.01 s.
(a) The work done by the applied force is 26.65 J.
(b) The work done by the normal force exerted by the table is 0.
(c) The work done by the force of gravity is 0.
(d) The work done by the net force on the block is 26.65 J.
<h3>
Work done by the applied force</h3>
W = Fdcosθ
W = 14 x 2.1 x cos25
W = 26.65 J
<h3>
Work done by the normal force</h3>
W = Fₙd
W = mg cosθ x d
W = (2.5 x 9.8) x cos(90) x 2.1
W = 0 J
<h3>Work done force of gravity</h3>
The work done by force of gravity is also zero, since the weight is at 90⁰ to the displacement.
<h3> Work done by the net force on the block</h3>
∑W = 0 + 26.65 J = 26.65 J
Thus, the work done by the applied force is 26.65 J.
The work done by the normal force exerted by the table is 0.
The work done by the force of gravity is 0.
The work done by the net force on the block is 26.65 J.
Learn more about work done here: brainly.com/question/8119756
#SPJ1
Answer: Because of different redshift of cloud.
Explanation:
We are seeing absorption lines from clouds of gas that lie between us and the quasar, and therefore each cloud has a different redshift.
A quasar's spectrum is hugely redshifted. And most astronomers think this large redshift tells us about the distance to the quasar.