1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saul85 [17]
3 years ago
12

The charge per unit length on a long, straight filament is -92.0 μC/m. Find the electric field 10.0 cm above the filament.

Physics
1 answer:
Pepsi [2]3 years ago
4 0

Answer:

E = 1.655 x 10⁷ N/C towards the filament

Explanation:

Electric field due to a line charge is given by the expression

E = [tex]\frac{\lambda}{2\pi\times\epsilon_0\times r}[/tex]

where λ is linear charge density of line charge , r is distance of given point from line charge and ε₀ is a constant called permittivity and whose value is

8.85 x 10⁻¹².

Putting the given values in the equation given above

E = \frac{92\times10^{-6}}{2\times3.14\times8.85\times10^{-12}\times10^{-1}}

E = 1.655 x 10⁷ N/C

You might be interested in
You create a ramp using two text books and a 0.50m board. Using a timer you determine that a cart can roll down the ramp in 0.55
ahrayia [7]

Answer:

The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.

Explanation:

Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

v=v_0+at\\\\v^2=v_0^2+2ad

Dividing the second equation by the first one, we obtain:

v=\frac{v_0^2+2ad}{v_0+at}

And, since v_0=0, then:

v=\frac{2ad}{at}\\\\v=\frac{2d}{t}\\\\v=\frac{2(0.50m)}{0.55s}\\\\v=1.81m/s

It means that the velocity at the bottom of the ramp is 1.81m/s.

We could use this data, plus any of the two initial equations, to determine the acceleration:

v=v_0+at\\\\\implies a=\frac{v}{t}\\\\a=\frac{1.81m/s}{0.55s}\\\\a=3.30m/s^2

So the acceleration is 3.30m/s^2.

7 0
3 years ago
Compare the signs of ƒ for lenses and mirrors.
STALIN [3.7K]

Answer:

simple

Explanation:

<h3>CONCAVE MIRRORS AND LENSES</h3>

<h3>f= negative</h3>

<h3>CONVEX MIRRORS AND LENSES</h3><h3 /><h3>f= positive</h3>

<h3>PLEASE FOLLOW ME AND MARK IT BRAINLIEST</h3>

3 0
2 years ago
Read 2 more answers
If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string
vovikov84 [41]

Complete Question

The speed of a transverse wave on a string of length L and mass m under T is given by the formula

     v=\sqrt{\frac{T}{(m/l)}}

If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string

Answer:

(m/l)=\frac{10}{V^2}

Explanation:

From the question we are told that

Speed of a transverse wave given by

v=\sqrt{\frac{T}{(m/l)}}

Maximum Tension is T=10.0N

Generally making (m/l) subject from the equation mathematically we have

v=\sqrt{\frac{T}{(m/l)}}

v^2=\frac{T}{(m/l)}

(m/l)=\frac{T}{V^2}

(m/l)=\frac{10}{V^2}

Therefore the Linear mass in terms of Velocity is given by

(m/l)=\frac{10}{V^2}

8 0
3 years ago
Why must objects be cooled before their mass is determined on a sensitive balance?
zubka84 [21]
Objects should be cooled before their mass is determined on a sensitive balance because it could damage the balance. Also, because it would give you wrong reading of the mass. Hot objects would warm the air around it. A warm air would expand and would produce convection as it rises causing to give the object a mass that is less than the actual. Another reason would be it would cause instability in the readings, the mass would fluctuate every now and then due to the convection currents around the object. It is always recommended to weigh the masses of objects that are in room temperature.
5 0
3 years ago
What is the change in potential energy if the distance separating the electron and proton is increased to 1.0 nm?
Vlada [557]

Answer:

Ep=-2.3*10^{-19}J

Explanation:

The change in potential energy can be expressed as:

Ep=K.\frac{q1.q2}{r}

where K is a constant with a value of 9*10^{9}\frac{N.m^{2}}{C^{2}}, q1 and q2 are the charges of the proton and the electron and r is the distance between them.

The charge for the proton is +1.6*10^{-19}C and the charge for the electron is -1.6*10^{-19}C.

Converting r=1.0nm to m:

1.0nm*\frac{1*10^{-9}m}{1.0nm}=1*10^{-9}m

Replacing values:

Ep=9*10^{9}\frac{N.m^{2}}{C^{2}}.\frac{(+1.6*10^{-19}C).(-1.6*10^{-19}C)}{1*10^{-9}m}

Ep=-2.3*10^{-19}J

5 0
2 years ago
Other questions:
  • How could you keep an object's acceleration the same if the force acting on the object were doubled?
    5·2 answers
  • How many miles long is burma from north to south?
    6·1 answer
  • A peg is located a distance h directly below the point of attachment of the cord. If h = 0.760 L, what will be the speed of the
    7·1 answer
  • Particles 1 and 2 of charge q1 = q2 = +3.20 × 10−19 C are on a y axis at distance d = 17.0 cm from the origin. Particle 3 of cha
    12·1 answer
  • Which object has the least amount of kinetic energy? a car driving down a road a soccer ball rolling down a hill a bicycle locke
    6·2 answers
  • The diagram shows changes of state between solid, liquid, and gas. The atoms of a substance lose energy during a change of state
    7·2 answers
  • What is the speed of a runner that runs 400m in 48.42 seconds?
    10·1 answer
  • Please help me, I’m confused on where to start.
    10·2 answers
  • Pls help i am in8th grade k12
    11·1 answer
  • A rectangular block measures 8cm by 5cm by 4cm, a mass of 1.25kg what is the volume of the block
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!