1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
2 years ago
5

Find dy/dx of the function y = √x sec*-1 (√x)​

Mathematics
2 answers:
vagabundo [1.1K]2 years ago
8 0

Answer:

\displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Arctrig Derivative:                                                                                                 \displaystyle \frac{d}{dx}[arcsec(u)] = \frac{u'}{|u|\sqrt{u^2 - 1}}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \sqrt{x}sec^{-1}(\sqrt{x})

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         \displaystyle y = \sqrt{x}arcsec(\sqrt{x})
  2. Product Rule:                                                                                                \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})]
  3. Chain Rule:                                                                                                     \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[\sqrt{x}] \bigg]
  4. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{d}{dx}[x^\bigg{\frac{1}{2}}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[x^\bigg{\frac{1}{2}}] \bigg]
  5. Basic Power Rule:                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{1}{2} - 1}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{1}{2} - 1} \bigg]
  6. Simplify:                                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{-1}{2}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{-1}{2}} \bigg]
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle y' = \frac{1}{2x^\bigg{\frac{1}{2}}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2x^\bigg{\frac{1}{2}}} \bigg]
  8. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2\sqrt{x}} \bigg]
  9. Arctrig Derivative:                                                                                         \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{1}{|\sqrt{x}|\sqrt{(\sqrt{x})^2 - 1}} \cdot \frac{1}{2\sqrt{x}} \bigg]
  10. Simplify:                                                                                                         \displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

ELEN [110]2 years ago
5 0

Hi there!

\large\boxed{\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}}

y = \sqrt{x} * sec^{-1}(-\sqrt{x}})

Use the chain rule and multiplication rules to solve:

g(x) * f(x) = f'(x)g(x) + g'(x)f(x)

g(f(x)) = g'(f(x)) * 'f(x))

Thus:

f(x) = √x

g(x) = sec⁻¹ (√x)

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{\sqrt{x}\sqrt{\sqrt{x}^{2} - 1}} * \frac{1}{2\sqrt{x}}

Simplify:

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{2|x|\sqrt{{x} - 1}}

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}

You might be interested in
Starting in the 1970s, medical technology allowed babies with very low birth weight (VLBW, less than 1500 grams, about 3.3 pound
cluponka [151]

Answer:

The test statistic value using the VLBW babies as group 1 is z=-2.76±0.01 and the P-value for the test (±0.0001) is 0.0030.

Step-by-step explanation:

This is a hypothesis test for the difference between proportions.

The claim is that the proportion of persons with normal birth weight that graduates from high school is significantly greater than the proportion of persons with very low birth weight that graduates from high school.

Then, the null and alternative hypothesis are:

H_0: \pi_1-\pi_2=0\\\\H_a:\pi_1-\pi_2> 0

The significance level is 0.05.

The sample 1 (VLBW group), of size n1=244 has a proportion of p1=0.77049.

p_1=X_1/n_1=188/244=0.77049

The sample 2 (control group), of size n2=247 has a proportion of p2=0.79757.

p_2=X_2/n_2=197/247=0.79757

The difference between proportions is (p1-p2)=-0.02708.

p_d=p_1-p_2=0.77049-0.79757=-0.02708

The pooled proportion, needed to calculate the standard error, is:

p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{188+197}{244+247}=\dfrac{385}{491}=0.988

The estimated standard error of the difference between means is computed using the formula:

s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.988*0.012}{244}+\dfrac{0.988*0.012}{247}}\\\\\\s_{p1-p2}=\sqrt{0.00005+0.00005}=\sqrt{0.0001}=0.0098

Then, we can calculate the z-statistic as:

z=\dfrac{p_d-(\pi_1-\pi_2)}{s_{p1-p2}}=\dfrac{-0.02708-0}{0.0098}=\dfrac{-0.02708}{0.0098}=-2.76

This test is a left-tailed test, so the P-value for this test is calculated as (using a z-table):

P-value=P(t

As the P-value (0.0030) is smaller than the significance level (0.05), the effect issignificant.

The null hypothesis is rejected.

There is enough evidence to support the claim that the proportion of persons with normal birth weight that graduates from high school is significantly greater than the proportion of persons with very low birth weight that graduates from high school.

3 0
3 years ago
Math help please show work
saw5 [17]

Answer:

You can measure the area of the yard but measuring the length and width and then multiplying. Then you can divide by the amount of sod that is used to cover to see how many bags that need to be bought.

Step-by-step explanation:

This should be good :)

pls mark brainliest:)

3 0
2 years ago
HELP I SUCK AT MATH!!!!AND IM FAILING STILL!!!!!
alukav5142 [94]

Answer:

y=x+1

Step-by-step explanation:

The slop and y-int are 1, just like on the graph

8 0
2 years ago
Read 2 more answers
If I’m 24 in 1979 what year was I born in?
Elan Coil [88]

Answer:

1950

Step-by-step explanation:

If you were 24 in 1974, simply subtract 24 from 1974 to find what year you were born in:

1974-24= 1950

Of course, it may be +/- 1 depending on what month you were born in, and what month it is now!

<em>I hope this helps! :)</em>

8 0
3 years ago
HELP!!! Please I need work shown I have no clue how to do this and I need a good answer please and thank you
zheka24 [161]
Factorize x²+7x+12 ===> (x+3)(x+4)

Factorize x²-3x-28 ===> (x-7)(x+4)

4x + 12 can be written====> 4(x+3)

Then the question could be written as follows:

 [(x+3)(x+4) / (x-7)(x+4) ] / 4(x+3) = [(x+3)(x+4) / (x-7)(x+4) ].[4(x+30]
After simplification you get 1 / 4(x-7)



7 0
3 years ago
Other questions:
  • Please help with this thank you!
    6·1 answer
  • Which national legislature has themost members?
    6·1 answer
  • PLEASE HELP I WILL GIVE BRANLIEST
    9·2 answers
  • a worker at a mill is delivering 5lbs bags of flour to a local warehouse, each box holds 12 bags. If the warehouse orders 3 tons
    8·2 answers
  • find the value of x of given figure and solve this question step by step plzz help question number D​
    5·1 answer
  • The stock of Company A gained 4% today to $4.16. What was the opening price of the stock in the beginning of the day?
    11·1 answer
  • Solve for x -3x+5y=15
    12·1 answer
  • 20 points brainliest!!!!
    15·2 answers
  • To keep in shape, Meg exercises at a track near her home. She requires 40 minutes to do 8 laps running and 6 laps walking. Assum
    8·1 answer
  • First one to help me get a lot of points<br>please help me <br>​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!