Find dy/dx of the function y = √x sec*-1 (√x)
2 answers:
Answer:

General Formulas and Concepts:
<u>Algebra I</u>
- Exponential Rule [Rewrite]:

- Exponential Rule [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Arctrig Derivative: ![\displaystyle \frac{d}{dx}[arcsec(u)] = \frac{u'}{|u|\sqrt{u^2 - 1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7B%7Cu%7C%5Csqrt%7Bu%5E2%20-%201%7D%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Rewrite:

- Product Rule:
![\displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Csqrt%7Bx%7D%5Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D)
- Chain Rule:
![\displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[\sqrt{x}] \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Csqrt%7Bx%7D%5Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Csqrt%7Bx%7D%5D%20%5Cbigg%5D)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle y' = \frac{d}{dx}[x^\bigg{\frac{1}{2}}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[x^\bigg{\frac{1}{2}}] \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D%20%5Cbigg%5D)
- Basic Power Rule:
![\displaystyle y' = \frac{1}{2}x^\bigg{\frac{1}{2} - 1}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{1}{2} - 1} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2%7Dx%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%20-%201%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7Dx%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%20-%201%7D%20%5Cbigg%5D)
- Simplify:
![\displaystyle y' = \frac{1}{2}x^\bigg{\frac{-1}{2}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{-1}{2}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2%7Dx%5E%5Cbigg%7B%5Cfrac%7B-1%7D%7B2%7D%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7Dx%5E%5Cbigg%7B%5Cfrac%7B-1%7D%7B2%7D%7D%20%5Cbigg%5D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle y' = \frac{1}{2x^\bigg{\frac{1}{2}}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2x^\bigg{\frac{1}{2}}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2x%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%7D%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2x%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%20%5Cbigg%5D)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2\sqrt{x}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20%5Cbigg%5D)
- Arctrig Derivative:
![\displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{1}{|\sqrt{x}|\sqrt{(\sqrt{x})^2 - 1}} \cdot \frac{1}{2\sqrt{x}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7B1%7D%7B%7C%5Csqrt%7Bx%7D%7C%5Csqrt%7B%28%5Csqrt%7Bx%7D%29%5E2%20-%201%7D%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20%5Cbigg%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Hi there!


Use the chain rule and multiplication rules to solve:
g(x) * f(x) = f'(x)g(x) + g'(x)f(x)
g(f(x)) = g'(f(x)) * 'f(x))
Thus:
f(x) = √x
g(x) = sec⁻¹ (√x)

Simplify:


You might be interested in
61/4 % converted into a decimal is 15.25
Answer: B- no
Hope this helped
Answer:
6 13/28
Step-by-step explanation:
Hope this helps!
Transformational properties allow systematic movement of congruent figures while maintaining or adjusting their orientation.