1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
3 years ago
5

Find dy/dx of the function y = √x sec*-1 (√x)​

Mathematics
2 answers:
vagabundo [1.1K]3 years ago
8 0

Answer:

\displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Arctrig Derivative:                                                                                                 \displaystyle \frac{d}{dx}[arcsec(u)] = \frac{u'}{|u|\sqrt{u^2 - 1}}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \sqrt{x}sec^{-1}(\sqrt{x})

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         \displaystyle y = \sqrt{x}arcsec(\sqrt{x})
  2. Product Rule:                                                                                                \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})]
  3. Chain Rule:                                                                                                     \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[\sqrt{x}] \bigg]
  4. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{d}{dx}[x^\bigg{\frac{1}{2}}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[x^\bigg{\frac{1}{2}}] \bigg]
  5. Basic Power Rule:                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{1}{2} - 1}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{1}{2} - 1} \bigg]
  6. Simplify:                                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{-1}{2}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{-1}{2}} \bigg]
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle y' = \frac{1}{2x^\bigg{\frac{1}{2}}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2x^\bigg{\frac{1}{2}}} \bigg]
  8. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2\sqrt{x}} \bigg]
  9. Arctrig Derivative:                                                                                         \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{1}{|\sqrt{x}|\sqrt{(\sqrt{x})^2 - 1}} \cdot \frac{1}{2\sqrt{x}} \bigg]
  10. Simplify:                                                                                                         \displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

ELEN [110]3 years ago
5 0

Hi there!

\large\boxed{\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}}

y = \sqrt{x} * sec^{-1}(-\sqrt{x}})

Use the chain rule and multiplication rules to solve:

g(x) * f(x) = f'(x)g(x) + g'(x)f(x)

g(f(x)) = g'(f(x)) * 'f(x))

Thus:

f(x) = √x

g(x) = sec⁻¹ (√x)

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{\sqrt{x}\sqrt{\sqrt{x}^{2} - 1}} * \frac{1}{2\sqrt{x}}

Simplify:

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{2|x|\sqrt{{x} - 1}}

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}

You might be interested in
Write down the exact value of cos 60 degrees
Misha Larkins [42]

Answer:

.5

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Solve for x<br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B4x%20-%206%7D%7B4%7D%20%20%3D%20%20%5Cfrac%7B2x%20%2B%205%7D%7B3%7
Marizza181 [45]

Answer:

x = 9.5

Step-by-step explanation:

Given

\frac{4x-6}{4} = \frac{2x+5}{3} ( cross- multiply )

3(4x - 6) = 4(2x + 5) ← distribute parenthesis on both sides

12x - 18 = 8x + 20 ( subtract 8x from both sides )

4x - 18 = 20 ( add 18 to both sides )

4x = 38 ( divide both sides by 4 )

x = \frac{38}{4} = 9.5

6 0
3 years ago
What is wrong with these statements? Correct each one.
aivan3 [116]

2^3 x 2^5

8 x 32

256

2^3 x 2^5 = 256

4 0
3 years ago
Read 2 more answers
Suzanne is looking at taking out a personal loan. Opportunity Loans is offering her $1600 at 3.45% for 1 year, with interest com
AleksAgata [21]

Step-by-step explanation:

So the general formula for compound interest is A = P(1+\frac{r}{n})^{nt} where r is the interest rate, t is the time in years, and n is the amount of compounds per year. So plugging in the values for both equations you'll get

Opportunity Loans:

 A = 1600(1+\frac{0.0345}{12})^{(12)(1)}

 A = 1600(1.002875)^{12}

 A \approx 1600(1.035)

 A = \$1,656.08

  Now to find the interest accrued on this loan you simply subtract 1600 from the A or final amount

 Interest=1656.08-1600\\Interest=56.08

General Loans:

 A = 1600(1+\frac{0.042}{4})^{(4)(1)}

 A = 1600(1.0105)^4

 A \approx 1600(1.042)

 A = 1,668.27

 To find the interest we do the same thing we did in the previous problem

 interest = 1668.27-1600\\interest=68.27

Opportunity loans has the least amount of interest after a year

 

 

8 0
2 years ago
paige and her family went tp the movies. they bought 4 tickets and paid $12 for popcorn. they spent $40. how much did each ticke
geniusboy [140]

Hello!

First of all, we subtract the popcorn cost, 12, from 40, giving us 32. Now we divide by 4 tickets.

32/4=8

Therefore, each ticket costed $8.

I hope this helps!

6 0
3 years ago
Read 2 more answers
Other questions:
  • Ill give brainy to the first person to answer this. Tom is buying topsoil for the flower bed shown below. One bag of topsoil cov
    7·2 answers
  • What is 4/16 simplify
    15·2 answers
  • I can't find the ANSWER​
    10·1 answer
  • Sally made a box to hold her jewlery collection. She used 42 inches of wood to build the sides of the box. If the box is 9 inche
    7·1 answer
  • Ebert used to make $22 an hour, but got a 10% raise. How much more will he make in a 40 work week with the raise? Give steps!
    9·2 answers
  • Plz help asap, hehdjjdnejdjfj
    13·1 answer
  • The area of a rectangle is expressed as (14r + 21) square feet. If the width of the
    7·1 answer
  • Question in the image will give brainlyy
    15·1 answer
  • First line joins ordered pairs negative 4, 3 and 2, negative 3. Second line joins negative 4, negative 3 and 2, 3. Part A shaded
    5·1 answer
  • (1 out of 5 parts) please help &gt;3
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!