Find dy/dx of the function y = √x sec*-1 (√x)
2 answers:
Answer:
![\displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Barcsec%28%5Csqrt%7Bx%7D%29%7D%7B2%5Csqrt%7Bx%7D%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7C%5Csqrt%7Bx%7D%7C%5Csqrt%7Bx%20-%201%7D%7D)
General Formulas and Concepts:
<u>Algebra I</u>
- Exponential Rule [Rewrite]:
![\displaystyle b^{-m} = \frac{1}{b^m}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20b%5E%7B-m%7D%20%3D%20%5Cfrac%7B1%7D%7Bb%5Em%7D)
- Exponential Rule [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Arctrig Derivative: ![\displaystyle \frac{d}{dx}[arcsec(u)] = \frac{u'}{|u|\sqrt{u^2 - 1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7B%7Cu%7C%5Csqrt%7Bu%5E2%20-%201%7D%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
![\displaystyle y = \sqrt{x}sec^{-1}(\sqrt{x})](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Csqrt%7Bx%7Dsec%5E%7B-1%7D%28%5Csqrt%7Bx%7D%29)
<u>Step 2: Differentiate</u>
- Rewrite:
![\displaystyle y = \sqrt{x}arcsec(\sqrt{x})](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%20%3D%20%5Csqrt%7Bx%7Darcsec%28%5Csqrt%7Bx%7D%29)
- Product Rule:
![\displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Csqrt%7Bx%7D%5Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D)
- Chain Rule:
![\displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[\sqrt{x}] \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Csqrt%7Bx%7D%5Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Csqrt%7Bx%7D%5D%20%5Cbigg%5D)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle y' = \frac{d}{dx}[x^\bigg{\frac{1}{2}}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[x^\bigg{\frac{1}{2}}] \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D%20%5Cbigg%5D)
- Basic Power Rule:
![\displaystyle y' = \frac{1}{2}x^\bigg{\frac{1}{2} - 1}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{1}{2} - 1} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2%7Dx%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%20-%201%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7Dx%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%20-%201%7D%20%5Cbigg%5D)
- Simplify:
![\displaystyle y' = \frac{1}{2}x^\bigg{\frac{-1}{2}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{-1}{2}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2%7Dx%5E%5Cbigg%7B%5Cfrac%7B-1%7D%7B2%7D%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7Dx%5E%5Cbigg%7B%5Cfrac%7B-1%7D%7B2%7D%7D%20%5Cbigg%5D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle y' = \frac{1}{2x^\bigg{\frac{1}{2}}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2x^\bigg{\frac{1}{2}}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2x%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%7D%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2x%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%20%5Cbigg%5D)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2\sqrt{x}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7Bd%7D%7Bdx%7D%5Barcsec%28%5Csqrt%7Bx%7D%29%5D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20%5Cbigg%5D)
- Arctrig Derivative:
![\displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{1}{|\sqrt{x}|\sqrt{(\sqrt{x})^2 - 1}} \cdot \frac{1}{2\sqrt{x}} \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7Darcsec%28%5Csqrt%7Bx%7D%29%20%2B%20%5Cbigg%5B%20%5Csqrt%7Bx%7D%5Cfrac%7B1%7D%7B%7C%5Csqrt%7Bx%7D%7C%5Csqrt%7B%28%5Csqrt%7Bx%7D%29%5E2%20-%201%7D%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D%20%5Cbigg%5D)
- Simplify:
![\displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7Barcsec%28%5Csqrt%7Bx%7D%29%7D%7B2%5Csqrt%7Bx%7D%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7C%5Csqrt%7Bx%7D%7C%5Csqrt%7Bx%20-%201%7D%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Hi there!
![\large\boxed{\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7Dsec%5E%7B-1%7D%28%5Csqrt%7Bx%7D%29%20%2B%20%20%5Cfrac%7B1%7D%7B2%7C%5Csqrt%7Bx%7D%7C%5Csqrt%7B%7Bx%7D%20-%201%7D%7D%7D)
![y = \sqrt{x} * sec^{-1}(-\sqrt{x}})](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%7Bx%7D%20%2A%20sec%5E%7B-1%7D%28-%5Csqrt%7Bx%7D%7D%29)
Use the chain rule and multiplication rules to solve:
g(x) * f(x) = f'(x)g(x) + g'(x)f(x)
g(f(x)) = g'(f(x)) * 'f(x))
Thus:
f(x) = √x
g(x) = sec⁻¹ (√x)
![\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{\sqrt{x}\sqrt{\sqrt{x}^{2} - 1}} * \frac{1}{2\sqrt{x}}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7Dsec%5E%7B-1%7D%28%5Csqrt%7Bx%7D%29%20%2B%20%5Csqrt%7Bx%7D%20%2A%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%7D%5Csqrt%7B%5Csqrt%7Bx%7D%5E%7B2%7D%20-%201%7D%7D%20%2A%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D)
Simplify:
![\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{2|x|\sqrt{{x} - 1}}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7Dsec%5E%7B-1%7D%28%5Csqrt%7Bx%7D%29%20%2B%20%5Csqrt%7Bx%7D%20%2A%20%5Cfrac%7B1%7D%7B2%7Cx%7C%5Csqrt%7B%7Bx%7D%20-%201%7D%7D)
![\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7Dsec%5E%7B-1%7D%28%5Csqrt%7Bx%7D%29%20%2B%20%20%5Cfrac%7B1%7D%7B2%7C%5Csqrt%7Bx%7D%7C%5Csqrt%7B%7Bx%7D%20-%201%7D%7D)
You might be interested in
Answer:
Your answer is on the picture
Step-by-step explanation:
idk if you seen this but I try this
Slope intercept form is y=mx+b
6x-12y=36
-12y=36-6x
y=36-6x/-12
y=0.5x-3
Answer: 7/50
14%
1/30
Step-by-step explanation:0.14 to fraction =0.14/100=14/100=7/50
0.14 to %= 0.14 ×100=14%
Total number of balls=6
Blue balls=2
Golden balls=2
Green balls=2
Probability of picking the first ball=1/6
Probability of picking the second ball= 1/5
P(winning wit 2 golden balls)=1/6×1/5=1/30
Answer:
$0.80/oz
Step-by-step explanation:
$4 for 5 ounces
unit cost = price/weight = $4/(5 oz.) = $0.80/oz