1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
2 years ago
5

Find dy/dx of the function y = √x sec*-1 (√x)​

Mathematics
2 answers:
vagabundo [1.1K]2 years ago
8 0

Answer:

\displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Arctrig Derivative:                                                                                                 \displaystyle \frac{d}{dx}[arcsec(u)] = \frac{u'}{|u|\sqrt{u^2 - 1}}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \sqrt{x}sec^{-1}(\sqrt{x})

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         \displaystyle y = \sqrt{x}arcsec(\sqrt{x})
  2. Product Rule:                                                                                                \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})]
  3. Chain Rule:                                                                                                     \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[\sqrt{x}] \bigg]
  4. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{d}{dx}[x^\bigg{\frac{1}{2}}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[x^\bigg{\frac{1}{2}}] \bigg]
  5. Basic Power Rule:                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{1}{2} - 1}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{1}{2} - 1} \bigg]
  6. Simplify:                                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{-1}{2}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{-1}{2}} \bigg]
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle y' = \frac{1}{2x^\bigg{\frac{1}{2}}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2x^\bigg{\frac{1}{2}}} \bigg]
  8. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2\sqrt{x}} \bigg]
  9. Arctrig Derivative:                                                                                         \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{1}{|\sqrt{x}|\sqrt{(\sqrt{x})^2 - 1}} \cdot \frac{1}{2\sqrt{x}} \bigg]
  10. Simplify:                                                                                                         \displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

ELEN [110]2 years ago
5 0

Hi there!

\large\boxed{\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}}

y = \sqrt{x} * sec^{-1}(-\sqrt{x}})

Use the chain rule and multiplication rules to solve:

g(x) * f(x) = f'(x)g(x) + g'(x)f(x)

g(f(x)) = g'(f(x)) * 'f(x))

Thus:

f(x) = √x

g(x) = sec⁻¹ (√x)

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{\sqrt{x}\sqrt{\sqrt{x}^{2} - 1}} * \frac{1}{2\sqrt{x}}

Simplify:

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{2|x|\sqrt{{x} - 1}}

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}

You might be interested in
Can someone please help me I’ll give brainlsit put in ur order please don’t be wrong
Alex

Answer:

just look it up on the internet and it will have brainly and you click on the one that says brainly an you will have the answer

3 0
3 years ago
What is the measure of an angle if the measures of its two adjacent supplementary angles add up to 100°?
Sindrei [870]
<h3>Answer:  130</h3>

Explanation:

Let x be the unknown angle we want to find.

Let y be adjacent and supplementary to x. This means x+y = 180

Let z also be adjacent and supplementary to x. So x+z = 180 also

Subtracting the two equations leads to y-z = 0 and y = z. So effectively we've proven the vertical angle theorem.

Since the supplementary angles to x add to 100, we know that y+z = 100. Plug in y = z and solve for z

y+z = 100

z+z = 100

2z = 100

z = 100/2

z = 50

Therefore,

x+z = 180

x+50 = 180

x = 180-50

x = 130

8 0
3 years ago
What is the solution to this expression<img src="https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7Bx%5E%7B2%7D%20%5Ccdot%20t%7D%20%20%5Cf
ankoles [38]

Answer:

4/xt 3 sqaured

Step-by-step explanation:

6 0
3 years ago
Find BG.<br><br><br> ………………………….
____ [38]
BG = 40. Equation: 4(3) + 8 + 20 = 40.
4 0
2 years ago
If the equation x² - kx - 36 = 0 has x = 12 as one root, what is the value of k?
sergiy2304 [10]
To solve for k, just plug in the x provided:

12^2 - k(12) - 36 = 0

144 - k(12) = 36

-k(12) = 1/4

k = -1/48
5 0
2 years ago
Other questions:
  • What is the unit rate of (0,0) and (12, 16)
    9·1 answer
  • Computer table measures 10ft by 17ft. Cost of table is $16 per sq ft. How much will the table cost.
    5·1 answer
  • Find f(-3) for f(x) = -2x + 5.<br><br> A. -1<br><br> B. 10<br><br> C. -10<br><br> D. 11
    14·2 answers
  • <img src="https://tex.z-dn.net/?f=%2848%20%5Cdiv%20x%20%2B%207%29%20%5Cdiv%200.25%20%3D%20%20-%2020%20" id="TexFormula1" title="
    14·1 answer
  • What is the length of the altitude of the equilateral triangle below
    12·2 answers
  • Malik Brooks works 40 hours per week, 52 weeks each year for Metro Delivery. He earns $9.15 per hour. If Malik receives a 4.9% m
    6·2 answers
  • In the figure shown DE = 7x-13 and DF =3x+3 what is the length of DF?
    8·1 answer
  • PLZZ HELP RN ASAP I NEED THIS RN TYSM
    14·2 answers
  • in my fish tank the ratio of the redfish to bluefish is 3:5 there are 20 bluefish how many red fish are there
    11·1 answer
  • Si un gramo de chocolate vale$38.25¿cuánto costarán 750 gramos?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!