1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
3 years ago
5

Find dy/dx of the function y = √x sec*-1 (√x)​

Mathematics
2 answers:
vagabundo [1.1K]3 years ago
8 0

Answer:

\displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Arctrig Derivative:                                                                                                 \displaystyle \frac{d}{dx}[arcsec(u)] = \frac{u'}{|u|\sqrt{u^2 - 1}}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \sqrt{x}sec^{-1}(\sqrt{x})

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         \displaystyle y = \sqrt{x}arcsec(\sqrt{x})
  2. Product Rule:                                                                                                \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})]
  3. Chain Rule:                                                                                                     \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[\sqrt{x}] \bigg]
  4. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{d}{dx}[x^\bigg{\frac{1}{2}}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[x^\bigg{\frac{1}{2}}] \bigg]
  5. Basic Power Rule:                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{1}{2} - 1}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{1}{2} - 1} \bigg]
  6. Simplify:                                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{-1}{2}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{-1}{2}} \bigg]
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle y' = \frac{1}{2x^\bigg{\frac{1}{2}}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2x^\bigg{\frac{1}{2}}} \bigg]
  8. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2\sqrt{x}} \bigg]
  9. Arctrig Derivative:                                                                                         \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{1}{|\sqrt{x}|\sqrt{(\sqrt{x})^2 - 1}} \cdot \frac{1}{2\sqrt{x}} \bigg]
  10. Simplify:                                                                                                         \displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

ELEN [110]3 years ago
5 0

Hi there!

\large\boxed{\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}}

y = \sqrt{x} * sec^{-1}(-\sqrt{x}})

Use the chain rule and multiplication rules to solve:

g(x) * f(x) = f'(x)g(x) + g'(x)f(x)

g(f(x)) = g'(f(x)) * 'f(x))

Thus:

f(x) = √x

g(x) = sec⁻¹ (√x)

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{\sqrt{x}\sqrt{\sqrt{x}^{2} - 1}} * \frac{1}{2\sqrt{x}}

Simplify:

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{2|x|\sqrt{{x} - 1}}

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}

You might be interested in
Can someone please help with this?
Mkey [24]

Answer:

true

Step-by-step explanation:

first find the median of the lower and upper half of the data. These values are quartile 1 (Q1) and quartile 3 (Q3). The IQR is the difference between Q3 and Q1.

6 0
3 years ago
Solve each system by elimination.<br> 10x-6y=-8<br> -10x+6y=8
Step2247 [10]

Answer:

Infinitely Many Solutions

Step-by-step explanation:

10x-6y=-8\\-10x+6y=8\\\0 = 0\\

4 0
2 years ago
Xander spends most of his time with his 10 closest friends. He has known 4 of his 10 friends since kindergarten. If he is going
Tju [1.3M]

Answer:

B

Step-by-step explanation:

6 0
4 years ago
Read 2 more answers
How do I simplify this expression
emmainna [20.7K]
7 squared is 7 x 7 so the answer would be 49 I believe
5 0
1 year ago
<img src="https://tex.z-dn.net/?f=2x%5E2%2B5x%2B3%3D0" id="TexFormula1" title="2x^2+5x+3=0" alt="2x^2+5x+3=0" align="absmiddle"
melamori03 [73]

Answer:

x=-\frac{3}{2},-1

Step-by-step explanation:

2x^2+5x+3=0

Split the second term (5x) into two terms. Multiply the coefficient of the first term (2) by the constant term (3):

2*3=6

Find which two numbers add up to 5 and multiply into 6:

3+2=5\\3*2=6\\3,2

Split 5x as the sum of 3x and 2x:

2x^2+3x+2x+3

Now factor out a common term for the first 2 terms:

2x^2+3x\\x(2x+3)

And do the same for the last 2 terms:

2x+3\\1(2x+3)

Re-insert:

x(2x+3)+1(2x+3)=0

Factor out the common term 2x+3 and insert the values in front of the parentheses (x and 1):

(2x+3)(x+1)=0

Separate the parentheses and equal them to 0. Solve for x:

2x+3=0\\2x+3-3=0-3\\2x=-3\\\\\frac{2x}{2}=\frac{-3}{2}\\\\  x=-\frac{3}{2}

and

x+1=0\\x+1-1=0-1\\x=-1

5 0
3 years ago
Other questions:
  • Figure A is a scale image of figure B. Figure A maps to figure B with a scale factor of 0.80. What is the value of x?
    5·2 answers
  • Line "AB" and line "CD" are perpendicular and intersect at point P. What is the measure of angle APC?​
    9·2 answers
  • mary made 15 000 ml of lemonade FOR HER PARTY, AND SHE SERVED THE LEMONADE DIVIDED EQUALLY INTO 8 PITCHERS. HER FRIEND DRANK 6 P
    6·1 answer
  • Brainly admin please don't delete this i actually forgot what is 1x0 1x2 and 0x2
    5·2 answers
  • Adult male heights have a normal probability distribution with a mean of 70 inches and a standard deviation of 4 inches.
    15·1 answer
  • All of the following equations have the same solution except _____.
    5·2 answers
  • Given the differential Equation y'+2y=2e^x ;solve this equation using the integration factor; solve for y to get the general sol
    14·1 answer
  • What are the dimensions of the rectangle shown on the coordinate plane?
    14·1 answer
  • Describe the end behavior of f(x)=-2x^3 using the leading coefficient and degree, and state the domain and range
    11·1 answer
  • 2/11 into lowest terms
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!