1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
3 years ago
5

Find dy/dx of the function y = √x sec*-1 (√x)​

Mathematics
2 answers:
vagabundo [1.1K]3 years ago
8 0

Answer:

\displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                 \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Arctrig Derivative:                                                                                                 \displaystyle \frac{d}{dx}[arcsec(u)] = \frac{u'}{|u|\sqrt{u^2 - 1}}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \sqrt{x}sec^{-1}(\sqrt{x})

<u>Step 2: Differentiate</u>

  1. Rewrite:                                                                                                         \displaystyle y = \sqrt{x}arcsec(\sqrt{x})
  2. Product Rule:                                                                                                \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})]
  3. Chain Rule:                                                                                                     \displaystyle y' = \frac{d}{dx}[\sqrt{x}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[\sqrt{x}] \bigg]
  4. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{d}{dx}[x^\bigg{\frac{1}{2}}]arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{d}{dx}[x^\bigg{\frac{1}{2}}] \bigg]
  5. Basic Power Rule:                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{1}{2} - 1}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{1}{2} - 1} \bigg]
  6. Simplify:                                                                                                         \displaystyle y' = \frac{1}{2}x^\bigg{\frac{-1}{2}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2}x^\bigg{\frac{-1}{2}} \bigg]
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle y' = \frac{1}{2x^\bigg{\frac{1}{2}}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2x^\bigg{\frac{1}{2}}} \bigg]
  8. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{d}{dx}[arcsec(\sqrt{x})] \cdot \frac{1}{2\sqrt{x}} \bigg]
  9. Arctrig Derivative:                                                                                         \displaystyle y' = \frac{1}{2\sqrt{x}}arcsec(\sqrt{x}) + \bigg[ \sqrt{x}\frac{1}{|\sqrt{x}|\sqrt{(\sqrt{x})^2 - 1}} \cdot \frac{1}{2\sqrt{x}} \bigg]
  10. Simplify:                                                                                                         \displaystyle y' = \frac{arcsec(\sqrt{x})}{2\sqrt{x}} + \frac{1}{2|\sqrt{x}|\sqrt{x - 1}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

ELEN [110]3 years ago
5 0

Hi there!

\large\boxed{\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}}

y = \sqrt{x} * sec^{-1}(-\sqrt{x}})

Use the chain rule and multiplication rules to solve:

g(x) * f(x) = f'(x)g(x) + g'(x)f(x)

g(f(x)) = g'(f(x)) * 'f(x))

Thus:

f(x) = √x

g(x) = sec⁻¹ (√x)

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{\sqrt{x}\sqrt{\sqrt{x}^{2} - 1}} * \frac{1}{2\sqrt{x}}

Simplify:

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) + \sqrt{x} * \frac{1}{2|x|\sqrt{{x} - 1}}

\frac{dy}{dx} = \frac{1}{2\sqrt{x}}sec^{-1}(\sqrt{x}) +  \frac{1}{2|\sqrt{x}|\sqrt{{x} - 1}}

You might be interested in
Multiply sixth of sixty six by a half of ten <br><br> Show step by step method
zimovet [89]
The answer is 55
(66 \times \frac{1}{6})  \times ( 10 \times \frac{1}{2}  ) =  \frac{66}{6}   \times  \frac{10}{2}  \\  = 11 \times 5 = 55




good luck
3 0
3 years ago
A gold, a silver, and a bronze medal are awarded in an Olympic event. In how many possible ways can the medals be awarded for a
RideAnS [48]

Answer:

720 possible ways

Step-by-step explanation:

The gold is awarded to the first position, the silver is awarded to the second position while the bronze is awarded to the third position.

The first position can be taken by any of the 10 runners

Now, the second position can be taken by remaining 9 runners

while the third position can be taken by the renaming 8 runners.

Thus, the number of ways in which these medals can be awarded = 10 * 9 * 8 = 720 ways

3 0
3 years ago
Work out the size of angle EAB. <br> You must give a reason for each stage of your working.
Nadya [2.5K]
There’s no photo so we can’t help you sorry :(
7 0
2 years ago
Is the equation y=9x linear
ludmilkaskok [199]

Answer:

Linear

Step-by-step explanation:

A linear equation is an equation of a straight line, which means that the degree of a linear equation must be  0  or  1  for each of its variables. In this case, the degree of variable  y  is  1  and the degree of variable  x  is  1 .

Linear

4 0
2 years ago
Read 2 more answers
A concession stand sells 50 drinks, of which 17 are orange juice. What is the probability that the next drink sold will be orang
ra1l [238]
34% because...
17/50 times 2= .34= 34%
7 0
3 years ago
Other questions:
  • What is the equation of the line (in point-slope form) that is parallel to y+2=−7(x+3) and passes through the point (1,4)?
    5·1 answer
  • The senior class at Ron’s school collected $4250 from students during picture sales at prom. Some students bought $15 packages a
    11·2 answers
  • The table shows the steps for solving the given inequality for x.
    5·1 answer
  • Figure below shows two triangles EFG and KLM​
    14·1 answer
  • What is the square root of 979???​
    9·1 answer
  • If (x + k) is a factor of f(x), which of the following must be true?
    15·2 answers
  • HELP PLEASE : For numbers 3 &amp; 4, draw a triangle for each to find the missing side.
    14·2 answers
  • Simplify the folllowing: (xy^3 z^4)
    8·2 answers
  • 43.1424 divided by 8.56
    5·2 answers
  • The perimeter of Stephanie’s triangle is half the perimeter of Juan’s triangle. Juan’s triangle is shown. Write a numerical expr
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!