<h3>
Answer:</h3>
0.024 kg CaO
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Aqueous Solutions</u>
- Molarity = moles of solute / liters of solution
<u>Atomic Structure</u>
- Reading a Periodic Tables
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
0.41 mol CaO
2.5 M Solution
<u>Step 2: Identify Conversions</u>
1000 g = 1 kg
Molar Mass of Ca - 40.08 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CaO - 40.08 + 16.00 = 56.08 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs as our lowest.</em>
0.024114 kg CaO ≈ 0.024 kg CaO
453 divided by 224
density is roughly 2.02 g per ml
as a ml is 1 cm3 density is 2.02 grams per centimeter cubed
Answer:
Acids are substances that produce an create high amounts of H+ ions when dissolved in water. And because the hydrogen bond's with non-metals,it forms covalent bonds. So,all acids are covalent bonds.
Explanation:
Colavent compounds are colavent bonds
Source:
https://www.quora.com/Are-acids-covalent-compound
Let the acid be HA.
The chemical formula for this acid will be the following:

The formula for the <span>acid dissociation constant will be the following:
</span>
![K_a= \dfrac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=K_a%3D%20%5Cdfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
<span>
We know [H+]=0.0001 (it's given).
However, we must find [A-] and [HA] in order to solve for the constant.
We find that [A-]=[H+] by using a electroneutrality equation.
Also, we can create a concentration equation to find [HA].
</span>
![0.5M=[A^-]+[HA]](https://tex.z-dn.net/?f=0.5M%3D%5BA%5E-%5D%2B%5BHA%5D)
![[HA]=0.5M-[A^-]](https://tex.z-dn.net/?f=%5BHA%5D%3D0.5M-%5BA%5E-%5D)
<span>
Now, we can find the acid dissociation constant.
</span>
![K_a= \dfrac{[H^+][A^-]}{0.5M-[A^-]}](https://tex.z-dn.net/?f=K_a%3D%20%5Cdfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B0.5M-%5BA%5E-%5D%7D)
The result of an exothermic reaction is released heat. According the Le Chatelier's principle, increasing<span> the </span>temperature means increasing<span> the amount of products. This means that </span><span> there will be more reactants left at equilibrium.</span>