Answer:
S = 0.788 g/L
Explanation:
The solubility product (Kps) is an equilibrium solubization constant, which can be calculated by the equation:
![Kps = \frac{[product]^x}{[reagent]^y}](https://tex.z-dn.net/?f=Kps%20%3D%20%5Cfrac%7B%5Bproduct%5D%5Ex%7D%7B%5Breagent%5D%5Ey%7D)
Where x and y are the stoichiometric coefficients of the product and the reagent, respectively. Because of the aggregation form, the concentration of solids is always equal to 1 for use in this equation.
Analyzing the equation, we see that for 1 mol of
is necessary 2 mols of
, so if we call "x" the molar concentration of
, for
we will have 2x, so:
![Kps = [Fe^{+2}].[F^-]^2\\\\2.36x10^{-6} = x(2x)^2\\\\2.36x10^{-6} = 4x^3\\\\x^3 = 5.9x10^{-7}\\\\x = \sqrt[3]{5.9x10^{-7}} \\\\x = 8.4x10^{-3} mol/L](https://tex.z-dn.net/?f=Kps%20%3D%20%5BFe%5E%7B%2B2%7D%5D.%5BF%5E-%5D%5E2%5C%5C%5C%5C2.36x10%5E%7B-6%7D%20%3D%20x%282x%29%5E2%5C%5C%5C%5C2.36x10%5E%7B-6%7D%20%3D%204x%5E3%5C%5C%5C%5Cx%5E3%20%3D%205.9x10%5E%7B-7%7D%5C%5C%5C%5Cx%20%3D%20%5Csqrt%5B3%5D%7B5.9x10%5E%7B-7%7D%7D%20%5C%5C%5C%5Cx%20%3D%208.4x10%5E%7B-3%7D%20mol%2FL)
So, to calculate the solubility (S) of FeF2, which is in g/L, we multiply this concentration by the molar mass of FeF2, which is:
Fe = 55.8 g/mol
F = 19 g/mol
FeF2 = Fe + 2xF = 55.8 + 2x19 = 93.8 g/mol
So,
[tex]S = 8.4x10^{-3}x93.8
S = 0.788 g/L
Answer:
0.00735°C
Explanation:
By seeing the question, we can see the elevation in boiling point with addition of BaCl₂ in water
⠀

⠀
⠀
<u>The</u><u> </u><u>elevation</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>phenomenon</u><u> </u><u>in</u><u> </u><u>which</u><u> </u><u>there</u><u> </u><u>is</u><u> </u><u>increase</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>in</u><u> </u><u>solution</u><u>,</u><u> </u><u>when</u><u> </u><u>the</u><u> </u><u>particular</u><u> </u><u>type</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>is</u><u> </u><u>added</u><u> </u><u>to</u><u> </u><u>pure</u><u> </u><u>solvent</u><u>.</u>
⠀
⠀

⠀
⠀
Where 'i' is van't hoff factor which represents the ratio of observed osmotic pressure and the value to be expected.
and 'i' is 3 (as given in the question)
⠀
'Kb' is molal boiling point constant. And it's value is 0.51°C/mol(given in question)
⠀
'm' represent the molality of solution. Molatity is no. of moles of solution present in 1kg of solution.
⠀
⠀
<u>To</u><u> </u><u>find</u><u> </u><u>molality</u><u>,</u><u> </u><u>we</u><u> </u><u>have</u><u> </u><u>to</u><u> </u><u>divide</u><u> </u><u>no</u><u>.</u><u> </u><u>of</u><u> </u><u>moles</u><u> </u><u>of</u><u> </u><u>solute</u><u> </u><u>by</u><u> </u><u>weight</u><u> </u><u>of</u><u> </u><u>solution</u>
⠀
While first we need to no. of moles

⠀
⠀
<u>Now</u><u>,</u><u> </u><u>we</u><u> </u><u>will</u><u> </u><u>find</u><u> </u><u>molality</u>
⠀

⠀
⠀

⠀

⠀
⠀
⠀
<u>Henceforth</u><u>,</u><u> </u><u>the</u><u> </u><u>change</u><u> </u><u>in</u><u> </u><u>boiling</u><u> </u><u>point</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>0</u><u>0</u><u>7</u><u>3</u><u>5</u><u>°</u><u>C</u><u>.</u>
Answer:
a. 50ml b.10ml c. 6.097ml d. 190.1 ml
Explanation:
According to Boyle's law
Volume is inversely proportional to pressure at constant temerature
Mathematically
P1V1=P2V2
P1=Initial pressure=0.8atm
V1=Initial volume=25ml
making V2 the subject
at 0.4atm P2=0.4 atm,
V2=25×0.8/0.4
=50ml
at 2 atm V2=25×0.8/2
=10 ml
1mmHg=0.00131579
2500mmHg=3.28 atm
At 3.28 atm,V2=25×0.8/3.28
=6.097 ml
at 80.0 torr
1 torr=0.00131579
80 torr=0.1052 atm
at 0.1048 atm V2=25×0.8/0.1048
=190.1 ml
Answer:
natural resources: materials or substances such as minerals, forests, water, and fertile land that occur in nature and can be used for economic gain.
renewable resources: a natural resource that is unlimited or that is naturally replenished rather quickly, such as sunlight or water
non renewable resources: (also called a finite resource) is a natural resource that cannot be readily replaced by natural means at a pace quick enough to keep up with consumption.
C.
evolution is the change a species goes through