When CH₄ is burnt in excess O₂ following products are formed,
CH₄ + 2 O₂ → CO₂ + 2 H₂O
According to equation 1 mole of CH₄ (16 g) reacts with 2 moles of O₂ to produce 1 mole of CO₂ and 2 moles of H₂O. Hence the products are,
1 mole of CO₂ and 2 moles of H₂O
Converting 1 mole CO₂ to grams;
As,
Mass = Moles × M.mass
Mass = 1 mol × 44 g.mol⁻¹
Mass = 40 g of CO₂
Converting 2 moles of H₂O to grams,
Mass = 2 mol × 18 g.mol⁻¹
Mass = 36 g of H₂O
Total grams of products;
Mass of CO₂ = 44 g
+ Mass of H₂O = 36 g
-------------
Total = 80 g of Product
Result:
80 grams of product is formed when 16 grams of CH₄ is burnt in excess of Oxygen.
Answer:
Explanation:
<u>1) Data:</u>
Base: NaOH
Vb = 15.00 ml = 15.00 / 1,000 liter
Mb = ?
Acid: H₂SO₄
Va = 17.88 ml = 17.88 / 1,000 liter
Ma = 0.1053
<u>2) Chemical reaction:</u>
The <em>titration</em> is an acid-base (neutralization) reaction to yield a salt and water:
- Acid + Base → Salt + Water
- H₂SO₄ (aq) + NaOH(aq) → Na₂SO₄ (aq) + H₂O (l)
<u>3) Balanced chemical equation:</u>
- H₂SO₄ (aq) + 2 NaOH(aq) → Na₂SO₄ (aq) + 2H₂O (l)
Placing coefficient 2 in front of NaOH and H₂O balances the equation
<u>4) Stoichiometric mole ratio:</u>
The coefficients of the balanced chemical equation show that 1 mole of H₂SO₄ react with 2 moles of NaOH. Hence, the mole ratio is:
- 1 mole H₂SO₄ : 2 mole NaOH
<u>5) Calculations:</u>
a) Molarity formula: M = n / V (in liter)
⇒ n = M × V
b) Nunber of moles of acid:
- nₐ = Ma × Va = 0.1053 (17.88 / 1,000)
c) Number of moles of base, nb:
- nb = Mb × Vb = Mb × (15.00 / 1,000)
d) At equivalence point number of moles of acid = number of moles of base
- 0.1053 × (17.88 / 1,000) = Mb × (15.00 / 1,000)
- Mb = 0.1053 × 17.88 / 15.00 = 0.1255 mole/liter = 0.1255 M
It's actually C because the rock cooled fast
Answer:
1.51367e+10 inches
Explanation:
1 mile = 63360
63360 x 238900 = 15136704000
Hope this helped!