Line graphs show correlation between the independent (on the x-axis) and dependent (on the y-axis) variables.
This problem is asking for the equilibrium constant at two different temperatures by describing the chemical equilibrium between gaseous nitrogen, oxygen and nitrogen monoxide at 25 °C and 1496 °C as the room temperature and the typical temperature inside the cylinders of a car's engine respectively:
N₂(g) + O₂(g) ⇄ 2 NO(g)
Thus, the calculated equilibrium constants turned out to be 6.19x10⁻³¹ and 9.87x10⁻⁵ at the aforementioned temperatures, respectively, according to the following work:
There is a relationship between the Gibbs free energy, enthalpy and entropy of the reaction, which leads to the equilibrium constant as shown below:

Which means we can calculate the enthalpy and entropy of reaction and subsequently the Gibbs free energy and equilibrium constant. In such a way, we calculate these two as follows, according to the enthalpies of formation and standard entropies of N₂(g), O₂(g) and NO(g) since these are assumed constant along the temperature range:

Then, we calculate the Gibbs free energy of reaction at both 25 °C and 1496 °C:

And finally, the equilibrium constants derived from the general Gibbs equation and Gibbs free energies of reaction:
![K=exp(-\frac{\Delta _rG}{RT} )\\\\K_{25\°C}=exp[-\frac{172420 J/mol}{(8.3145\frac{J}{mol*K})(298.15K)} ]=6.19x10^{-31}\\\\K_{1496\°C}=exp[-\frac{135650J/mol}{(8.3145\frac{J}{mol*K})(1769K)} ]=9.87x10^{-5}](https://tex.z-dn.net/?f=K%3Dexp%28-%5Cfrac%7B%5CDelta%20_rG%7D%7BRT%7D%20%29%5C%5C%5C%5CK_%7B25%5C%C2%B0C%7D%3Dexp%5B-%5Cfrac%7B172420%20J%2Fmol%7D%7B%288.3145%5Cfrac%7BJ%7D%7Bmol%2AK%7D%29%28298.15K%29%7D%20%5D%3D6.19x10%5E%7B-31%7D%5C%5C%5C%5CK_%7B1496%5C%C2%B0C%7D%3Dexp%5B-%5Cfrac%7B135650J%2Fmol%7D%7B%288.3145%5Cfrac%7BJ%7D%7Bmol%2AK%7D%29%281769K%29%7D%20%5D%3D9.87x10%5E%7B-5%7D)
Learn more:
The importance of Carbon is that it can clean, and its kind of bad for air though.
The compound FeCl3 is made of one atom and three atoms of chlorine
<u><em>explanation</em></u>
- FeCl3 is made up of two elements.
- that is iron with Fe chemical symbol and chlorine with Cl chemical symbol.
- There are 3 atoms of chlorine in FeCl3 because the subscript in front of Cl in FeCl3 is 3.
Particles of gas are more scarcely placed as compared to that of liquid.
the intermolecular forces will be less in gaseous state and hence is less stable