Answer:
See the answer below, please.
Explanation:
The equilibrium constant is defined as the relationship between products and reagents, each one elevated to their stoichiometric coefficients, in that of the given equation, the Kc is:
Kc= (NH4)^1/ (NH3)^1 x (HI)^1
NH4= products
NH3 and HI = reagents
Answer:
Answer D. Picture II shows a chemical change, because the same substance changes form
Explanation:
This is the temperature that water molecules slow down enough to stick to each other and form a solid crystal
Answer:
Static Electricity.
Explanation:
Static electricity is defined as 'an electric charge that has built up on an insulated body, often due to friction.' <u> It is an outcome of the disparity among the positive, as well as, negative charges residing in a body</u> or object and causes the charge to build up on the surface of the body. The accumulation of electric charges on the objects like wool, hair, silk, plastic, etc. causes them to possess static electricity. These charges stay on the surface until it is discharged or released through a source. Thus, <u>'static electricity</u>' is the correct answer.
Answer:
See explanation, some might be graded as wrong if it's an automatic grading system but most
Explanation:
1. lose
2. valence
3. noble (Atoms don't actually always do this, but since the word gas is after the blank, it is the only option)
4. 4
5. have
6. 10
5 and 6 are a little ambiguous and could have many answers
Answer:
See explanation
Explanation:
The magnitude of electronegativity difference between atoms in a bond determines whether that bond will be polar or not.
If the electronegativity difference between atoms in a bond is about 1.7, the bond is ionic. If the electronegativity difference is greater than 0.4 and less than 1.7, the bond will have a polar covalent character. Lastly, if the electronegativity difference between the bond is less than or equal to 0.4, the covalent bond is non polar.
The electronegativity difference between carbon and hydrogen is about 0.4 which corresponds to a nonpolar covalent bond hence the molecule is nonpolar.
The electronegativity difference between carbon and fluorine is about 1.5 indicating a highly polar bond. This gives CH3F an overall dipole moment thereby making the molecule polar.