Answer:
(a) The power wasted for 0.289 cm wire diameter is 15.93 W
(b) The power wasted for 0.417 cm wire diameter is 7.61 W
Explanation:
Given;
diameter of the wire, d = 0.289 cm = 0.00289 m
voltage of the wire, V = 120 V
Power drawn, P = 1850 W
The resistivity of the wire, ρ = 1.68 x 10⁻⁸ Ω⋅m
Area of the wire;
A = πd²/4
A = (π x 0.00289²) / 4
A = 6.561 x 10⁻⁶ m²
(a) At 26 m of this wire, the resistance of the is
R = ρL / A
R = (1.68 x 10⁻⁸ x 26) / 6.561 x 10⁻⁶
R = 0.067 Ω
Current in the wire is calculated as;
P = IV
I = P / V
I = 1850 / 120
I = 15.417 A
Power wasted = I²R
Power wasted = (15.417²)(0.067)
Power wasted = 15.93 W
(b) when a diameter of 0.417 cm is used instead;
d = 0.417 cm = 0.00417 m
A = πd²/4
A = (π x 0.00417²) / 4
A = 1.366 x 10⁻⁵ m²
Resistance of the wire at 26 m length of wire and 1.366 x 10⁻⁵ m² area;
R = ρL / A
R = (1.68 x 10⁻⁸ x 26) / 1.366 x 10⁻⁵
R = 0.032 Ω
Power wasted = I²R
Power wasted = (15.417²)(0.032)
Power wasted = 7.61 W
1. mechanical to chemical
2.potential to machanical
3.motion to potintial
The amount of gold atoms could be calculated by dividing the
total weight of the gold with the mass of a single gold atom. Just convert the
given weight to grams then divide it with 3.27x10^-22 grams. The answer would
be 7.22x10^20.
Answer:
It says about the motion and the graph of the object is stationary, basically travelling at the same speed at any time of the graph. It will never change.
Explanation:
To draw a diagram:
1. Draw an object and represent the speed as stationary and constant at any time.
Answer:
No
Explanation:
You could try to give it enough to fill all valence electrons in all of the atoms in the conductor, but practically this could not be achieved.