In a chemical reaction the products are found at the right of the equation, the products are what is being made once the reaction is complete. On the right side if the chemical equation is the reactants or starting materials, these are the substances that are combined to provide a product on the right side of the equation. Since I am not able to see the equation, just simple add all the carbons that are on the left and that will tell you how many carbons there are in total on the reactant side and if you add all of the carbons on the right side it will let you know how many carbons there are on the product side. The same steps can be taken for Oxygen.
I am unable to answer the last one as I need more information. But basically the law states that any system for which matter and energy cannot be transfer as it is a closed system, then since the system's mass can't change then it cannot be added or subtracted
Answer:
soilds - close together arranged in a regular way
liquids - close together arranged in a random way
gases - far apart arranged in a random way
Explanation:
Answer:
1610.7 g is the weigh for 4.64×10²⁴ atoms of Bi
Explanation:
Let's do the required conversions:
1 mol of atoms has 6.02×10²³ atoms
Bi → 1 mol of bismuth weighs 208.98 grams
Let's do the rules of three:
6.02×10²³ atoms are the amount of 1 mol of Bi
4.64×10²⁴ atoms are contained in (4.64×10²⁴ . 1) /6.02×10²³ = 7.71 moles
1 mol of Bi weighs 208.98 g
7.71 moles of Bi must weigh (7.71 . 208.98 ) /1 = 1610.7 g
Answer:
Listen in Class. The first step to passing any test is to begin preparing right there in the classroom. ...
Review Lab and Lecture Notes. ...
Know the Vocabulary. ...
Develop a Study Schedule. ...
Take Advantage of Online Study Resources.
Explanation:
Answer:
See figure 1
Explanation:
On this case we have a <u>base</u> (methylamine) and an <u>acid</u> (2-methyl propanoic acid). When we have an acid and a base an <u>acid-base reaction </u>will take place, on this specific case we will produce an <u>ammonium carboxylate salt.</u>
Now the question is: <u>¿These compounds can react by a nucleophile acyl substitution reaction?</u> in other words <u>¿These compounds can produce an amide? </u>
Due to the nature of the compounds (base and acid), <u>the nucleophile</u> (methylamine) <u>doesn't have the ability to attack the carbon</u> of the carbonyl group due to his basicity. The methylamine will react with the acid-<u>producing a positive charge</u> on the nitrogen and with this charge, the methylamine <u>loses all his nucleophilicity.</u>
I hope it helps!