1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mila [183]
3 years ago
13

Hellllllllllllllllllllllllpppppppppppppppppppppppppp

Mathematics
1 answer:
FrozenT [24]3 years ago
6 0

Answer:

What grade is this?

Step-by-step explanation:

You might be interested in
Using Heron's Formula, find the Area.<br> Sides are 7 13 8
Amanda [17]

Answer:

10.3

Step-by-step explanation:

hope this helps, if any genius answers as well, give brainliest to them

5 0
2 years ago
Read 2 more answers
Help! given 2(x-9)=-10 prove x=4 with statements and reasons
Sedbober [7]

Step-by-step explanation:

<u>Proof:</u>

<em>2</em><em> </em><em>(</em><em> </em><em>x </em><em>-</em><em> </em><em>9</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em><em>0</em><em> </em><em> </em><em>when </em><em>x </em><em>=</em><em> </em><em>4</em>

<em>2</em><em> </em><em>(</em><em> </em><em>4</em><em> </em><em>-</em><em> </em><em>9</em><em>)</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em><em>0</em>

<em>8</em><em> </em><em>-</em><em> </em><em>1</em><em>8</em><em> </em><em>=</em><em> </em><em>-</em><em>1</em><em>0</em>

<em><u>-</u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u> </u></em><em><u>-</u></em><em><u>1</u></em><em><u>0</u></em><em><u> </u></em>..........hence proven

<u>Reasons </u>

- When you replace X with 4, you can clearly see that the equation is equal to -10.

sorry I couldn't answer accurately, but I hope this helps

8 0
3 years ago
Evaluate the integral, show all steps please!
Aloiza [94]

Answer:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x=\dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x

Rewrite 9 as 3²  and rewrite the 3/2 exponent as square root to the power of 3:

\implies \displaystyle \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

<u />\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=3 \sin \theta

\begin{aligned}\implies \sqrt{3^2-x^2} & =\sqrt{3^2-(3 \sin \theta)^2}\\ & = \sqrt{9-9 \sin^2 \theta}\\ & = \sqrt{9(1-\sin^2 \theta)}\\ & = \sqrt{9 \cos^2 \theta}\\ & = 3 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=3 \cos \theta

\implies \text{d}x=3 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x & = \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x\\\\& = \int \dfrac{1}{\left(3 \cos \theta\right)^3}\:\:3 \cos \theta\:\:\text{d}\theta \\\\ & = \int \dfrac{1}{\left(3 \cos \theta\right)^2}\:\:\text{d}\theta \\\\ & =  \int \dfrac{1}{9 \cos^2 \theta} \:\: \text{d}\theta\end{aligned}

Take out the constant:

\implies \displaystyle \dfrac{1}{9} \int \dfrac{1}{\cos^2 \theta}\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad\sec^2 \theta=\dfrac{1}{\cos^2 \theta}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta = \dfrac{1}{9} \tan \theta+\text{C}

\textsf{Use the trigonometric identity}: \quad \tan \theta=\dfrac{\sin \theta}{\cos \theta}

\implies \dfrac{\sin \theta}{9 \cos \theta} +\text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{3}:

\implies \dfrac{x}{9(3 \cos \theta)} +\text{C}

\textsf{Substitute back in }3 \cos \theta=\sqrt{9-x^2}:

\implies \dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Learn more about integration by substitution here:

brainly.com/question/28156101

brainly.com/question/28155016

4 0
2 years ago
PLZZZZZZZZZZZZZZ ZZ ZN Z Z Z ZZ Z Z ZZ ZHALP NUM 1-4
zheka24 [161]
1. 10/12 or 5/6
2. 5/6
3.7 1/12
4. 10 1/6

5 0
3 years ago
Dyahnzskft - GMEEET C0DE<br>GIRLSSSSSSS❤️❤️❤️❤️​
Anna007 [38]

Answer:

zoin in I am live and thecode is there in my question

7 0
2 years ago
Other questions:
  • Which of the following is the product for (x+4)(x-2)?
    11·1 answer
  • PLEASE HELP!! This is due in less than 5 minutes or I fail!!!
    11·2 answers
  • Multiple choice answers choices are <br> A. 122.76 in<br> B. 70.88 in<br> c. 30.69 in
    12·1 answer
  • The answer to this please and thank you
    15·1 answer
  • What is the slope of the line below
    7·1 answer
  • The probability of X being at most A
    10·1 answer
  • The value of y varies directly with x, when y = 5 and x = 6. What is the equation for this relationship? What is the value of y
    13·2 answers
  • Please help me lol Im not good at this stuff
    6·2 answers
  • And please help me with this one too!! Thank you!!
    14·2 answers
  • Do the ones you know. loving divers license o-o&lt;3
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!