Answer:
See attachment.
Explanation:
In the first step, a cyclic structure with a positive bromine is formed. The bromine shares the positive charge with the two carbons that it is bonded to, so the carbons are partially positive.
The second bromine atom then attacks the carbon center, coming in from below the first bromine atom ("backside attack") where the antibonding orbital of the second bromine atom is.
The stereochemistry of the mechanism causes the final product to be an anti-dibromocyclohexane.
Answer: The balance of the reaction shifts toward the endothermic reaction.
Explanation:
An ENDOTHERMIC REACTION requires input of HEAT ENERGY to drive it FORWARD from reactants, unto completion of products.
So, on increasing the temperature (available heat) the REVERSIBLE REACTION favors the shifts towards the endothermic reaction
<h3>Further explanation</h3>
Basic oxides ⇒ metal(usually alkali/alkaline earth) +O₂
L + O₂ ⇒ L₂O
L + O₂ ⇒ LO
Dissolve in water becomes = basic solution
L₂O+H₂O⇒ 2LOH
LO + H₂O⇒ L(OH)₂
So the basic oxides : Na₂O and MgO
Na₂O + H₂O⇒NaOH
MgO +H₂O⇒Mg(OH)₂
The aqueous solution of CO₂(dissolve in water)
CO₂ + +H₂O⇒ H₂CO₃(carbonic acid)
Explanation:
Moles of N2 = 35.0g / (28g/mol) = 1.25mol
Moles of H2 = 60.0g / (2g/mol) = 30.0mol
Since 1.25mol * 3 < 30.0mol, nitrogen is limiting.
Moles of NH3 = 1.25mol * 2 = 2.50mol.
Mass of NH3 = 2.50mol * (17g/mol) = 42.5g.
30.0mol - 1.25mol * 3 = 26.25mol.
Excess mass of H2
= 26.25mol * (2g/mol) = 52.5g.