1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kicyunya [14]
3 years ago
14

Why do engineers play a variety of roles in the engineering process? They are part of a team. They need to act as both scientist

s and engineers when working on a project. They have to brainstorm, build, and design all of their projects alone. They have to be cyclical in their process.
Engineering
2 answers:
Sidana [21]3 years ago
8 0

Answer:

Explanation:

They showed that many people worked on the project and demonstrate how hard they worked.

Kamila [148]3 years ago
4 0

Answer: They showed that many people worked on the project and demonstrate how hard they worked.

Explanation:

You might be interested in
Calculate the load, PP, that would cause AA to be displaced 0.01 inches to the right. The wires ABAB and ACAC are A36 steel and
Nataly [62]

Answer:

P = 4.745 kips

Explanation:

Given

ΔL = 0.01 in

E = 29000 KSI

D = 1/2 in  

LAB = LAC = L = 12 in

We get the area as follows

A = π*D²/4 = π*(1/2 in)²/4 = (π/16) in²

Then we use the formula

ΔL = P*L/(A*E)

For AB:

ΔL(AB) = PAB*L/(A*E) = PAB*12 in/((π/16) in²*29*10⁶ PSI)

⇒  ΔL(AB) = (2.107*10⁻⁶ in/lbf)*PAB

For AC:

ΔL(AC) = PAC*L/(A*E) = PAC*12 in/((π/16) in²*29*10⁶ PSI)

⇒  ΔL(AC) = (2.107*10⁻⁶ in/lbf)*PAC

Now, we use the condition

ΔL = ΔL(AB)ₓ + ΔL(AC)ₓ = ΔL(AB)*Cos 30° + ΔL(AC)*Cos 30° = 0.01 in

⇒  ΔL = (2.107*10⁻⁶ in/lbf)*PAB*Cos 30°+(2.107*10⁻⁶ in/lbf)*PAC*Cos 30°= 0.01 in

Knowing that   PAB*Cos 30°+PAC*Cos 30° = P

we have

(2.107*10⁻⁶ in/lbf)*P = 0.01 in

⇒  P = 4745.11 lb = 4.745 kips

The pic shown can help to understand the question.

5 0
3 years ago
Technician a says that if a tapered roller bearing is adjusted to loose
Effectus [21]
The technician is true
5 0
3 years ago
For some transformation having kinetics that obey the Avrami equation, the parameter n is known to have a value of 2. If, after
kotegsom [21]

This question is incomplete, the complete question is;

For some transformation having kinetics that obey the Avrami equation, the parameter n is known to have a value of 2. If, after 100 s, the reaction is 40% complete, how long (total time in seconds) will it take the transformation to go to 95% completion

y = 1 - exp( -ktⁿ )

Answer: the time required for 95% transformation is 242.17 s

Explanation:

First, we calculate the value of k which is the dependent variable in Avrami equation

y = 1 - exp( -ktⁿ )

exp( -ktⁿ ) = 1 - y

-ktⁿ = In( 1 - y )

k = - In( 1 - y ) / tⁿ

now given that; n = 2, y = 40% = 0.40, and t = 100 s

we substitute

k = - In( 1 - 0.40 ) / 100²

k = - In(0.60) / 10000

k = 0.5108 / 10000

k = 0.00005108 ≈ 5.108 × 10⁻⁵

Now calculate the time required for 95% transformation

tⁿ = - In( 1 - y ) / k

t = [- In( 1 - y ) / k ]^1/n

n = 2, y = 95% = 0.95 and k = 5.108 × 10⁻⁵

we substitute our values

t = [- In( 1 - 0.95 ) / 5.108 × 10⁻⁵ ]^1/2

t = [2.9957 / 5.108 × 10⁻⁵]^1/2

t = [ 58647.22 ]^1/2

t = 242.17 s

Therefore the time required for 95% transformation is 242.17 s

8 0
3 years ago
A 1000 kg turbine has a rotating unbalance of 0.1 kg.m. The turbine operates at a speed between 500 to 750 rpm. What is the maxi
raketka [301]

Answer:

maximum isolator stiffness k =1764 kN-m

Explanation:

mean speed of rotation =\frac{N_1 +N_2}{2}

Nm = \frac{500+750}{2} = 625 rpm

w =\frac{2\pi Nm}{60}

  =65.44 rad/sec

F_T = mw^2 e

F_T = mew^2

       = 0.1*(65.44)^2

F_T =428.36 N

Transmission ratio =\frac{300}{428.36} = 0.7

also

transmission ratio = \frac{1}{[\frac{w}{w_n}]^{2} -1}

0.7 =\frac{1}{[\frac{65.44}{w_n}]^2 -1}

SOLVING FOR Wn

Wn = 42 rad/sec

Wn = \sqrt {\frac{k}{m}

k = m*W^2_n

k = 1000*42^2 = 1764 kN-m

k =1764 kN-m

3 0
3 years ago
A cylindrical metal specimen of initial diameter d0 =14 mm, initial length L0=53 mm, strain hardening exponent n=0.31, strength
Marrrta [24]

Answer:

a) Ef = 0.755

b) length of specimen( Lf )= 72.26mm

  diameter at fracture = 9.598 mm

c) max load ( Fmax ) = 52223.24 N

d) Ft = 51874.67 N

Explanation:

a) Determine the true strain at maximum load and true strain at fracture

True strain at maximum load

Df = 9.598 mm

True strain at fracture

Ef = 0.755

b) determine the length of specimen at maximum load and diameter at fracture

Length of specimen at max load

Lf = 72.26 mm

Diameter at fracture

= 9.598 mm

c) Determine max load force

Fmax = 52223.24 N

d) Determine Load ( F ) on the specimen when a true strain et = 0.25 is applied during tension test

F = 51874.67 N

attached below is a detailed solution of the question above

3 0
3 years ago
Other questions:
  • Which of the following color schemes is composed of hues next to eachother on the color wheel ?
    7·1 answer
  • Different types of steels contain different elements that alter the characteristics of the steel. For each of the following elem
    6·1 answer
  • When trying to solve a frame problem it will typically be necessary to draw many free body diagrams. a)-True b)-False
    6·1 answer
  • A belt drive was designed to transmit the power of P=7.5 kW with the velocity v=10m/s. The tensile load of the tight side is twi
    14·1 answer
  • List three reasons for surfacing metals.
    8·2 answers
  • 5 kg of a wet steam has a volume of 2 m3
    8·1 answer
  • Cite another example of information technology companies pushing the boundaries of privacy issues; apologizing, and then pushing
    9·1 answer
  • Describe the role of C-S-H in providing strength for cement. Discuss which compounds produce C-S-H and why balancing the amounts
    13·1 answer
  • 2. A F-22 Raptor has just climbed through an altitude of 9,874 m at 1,567 kph when a disk
    8·1 answer
  • The regulator is closed when the adjusting screw is turned in (clockwise).
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!