Answer:
a) 23.89 < -25.84 Ω
b) 31.38 < 25.84 A
c) 0.9323 leading
Explanation:
A) Calculate the load Impedance
current on load side = 0.75 p.u
power factor angle = 25.84
= 0.75 < 25.84°
attached below is the remaining part of the solution
<u>B) Find the input current on the primary side in real units </u>
load current in primary = 31.38 < 25.84 A
<u>C) find the input power factor </u>
power factor = 0.9323 leading
<em></em>
<em>attached below is the detailed solution </em>
Answer:
Heat transfer rate(Q)= 1.197kW
Power output(W)=68.803kW
Explanation:
a converging nozzle has an exit area of 0.001 m2. Air enters the nozzle with negligible velocity at a pressure of 1 MPa and a temperature of 360 K. For isentropic flow of an ideal gas with k = 1.4 and the gas constant R = Ru/MW = 287 J/kg-K, determine the mass flow rate in kg/s and the exit Mach number for back pressures
100% (3 ratings)
A_2 = 0.001 m^2 P_1 = 1 MPa, T_1 = 360 k P_2 = 500 kpa p^gamma - 1/gamma proportional T (1000/500)^1.4 - 1/1.4 = (360/T_2) 2^4/14 = 360/T_2 T_2
Natural ventilation unlike fan forced ventilation uses the natural forces of wind and buoyancy to deliver fresh air into buildings
Answer:
(b) Given the Weibull parameters of example 11-3, the factor by which the catalog rating must be increased if the reliability is to be increased from 0.9 to 0.99.
Equation 11-1: F*L^(1/3) = Constant
Weibull parameters of example 11-3: xo = 0.02 (theta-xo) = 4.439 b = 1.483
Explanation:
(a)The Catalog rating(C)
Bearing life:
Catalog rating:
From given equation bearing life equation,
we Dividing eqn (2) with (1)
The Catalog rating increased by factor of 1.26
(b) Reliability Increase from 0.9 to 0.99
Now calculating life adjustment factor for both value of reliability from Weibull parametres
Similarly
Now calculating bearing life for each value
Now using given ball bearing life equation and dividing each other similar to previous problem
Catalog rating increased by factor of 0.61