1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
777dan777 [17]
3 years ago
13

Describe the role of C-S-H in providing strength for cement. Discuss which compounds produce C-S-H and why balancing the amounts

of those compounds is important.
Engineering
1 answer:
wariber [46]3 years ago
8 0

Answer:

Following are the solution to this question:

Explanation:

Whenever a chemical reaction occurs between water and cement the heat is released, and a CaOSiO_2H_2O (C-S-H gel) gel constructs gel is also recognized as "tobermorite gel."

This one gel acts like a pack of gum and also has a cement quality, that holds its particles intact and therefore contributes to the overall compression mix. An increase in supply explicitly causes the movement in the outcome of power. C3S and C2S are both the compounds of Bouge that produce hydration C-S-H gel.

It mixture must be balanced as Ca(OH)_2 with C-S-H gel also is given as a byproduct. It Ca(OH)_2 , that cause sudden with sulphate and form CaSO_4 , is an unacceptable substance. Sulfate attack or later deterioration of its cement is caused by this CaSO_4 .

All C3S and C2S generate various amounts of C-S-H gel so, the required strength can be maintained without compromising on real term durability.

You might be interested in
A thin 20-cm*20-cm flat plate is pulled at 1m/s horizontally through a 4-mm thick oil layer sandwiched between two stationary pl
leva [86]

Answer:

hindi ko polynomial alam

3 0
3 years ago
In the circuit given below, R1 = 17 kΩ, R2 = 74 kΩ, and R3 = 5 MΩ. Calculate the gain 1formula58.mml when the switch is in posit
Elenna [48]

Answer:a

a) Vo/Vi = - 3.4

b) Vo/Vi = - 14.8

c) Vo/Vi = - 1000

Explanation:

a)

R1 = 17kΩ

for ideal op-amp

Va≈Vb=0 so Va=0

(Va - Vi)/5kΩ + (Va -Vo)/17kΩ = 0

sin we know Va≈Vb=0

so

-Vi/5kΩ + -Vo/17kΩ = 0

Vo/Vi = - 17k/5k

Vo/Vi = -3.4

║Vo/Vi ║ = 3.4    ( negative sign phase inversion)

b)

R2 = 74kΩ

for ideal op-amp

Va≈Vb=0 so Va=0

so

(Va-Vi)/5kΩ + (Va-Vo)74kΩ = 0

-Vi/5kΩ + -Vo/74kΩ = 0

Vo/Vi = - 74kΩ/5kΩ

Vo/Vi = - 14.8

║Vo/Vi ║ = 14.8  ( negative sign phase inversion)

c)

Also for ideal op-amp

Va≈Vb=0 so Va=0

Now for position 3 we apply nodal analysis we got at position 1

(Va - Vi)/5kΩ + (Va - Vo)/5000kΩ = 0           ( 5MΩ = 5000kΩ )

so

-Vi/5kΩ + -Vo/5000kΩ = 0

Vo/Vi = - 5000kΩ/5kΩ

Vo/Vi = - 1000

║Vo/Vi ║ = 1000  ( negative sign phase inversion)

3 0
3 years ago
How does the clearance volume affect the efficiency of the Otto cycle?
eduard

Answer:

Explanation:

A smaller clearance volume means a higher compression. A higher compression means better thermal efficiency. However a compression ratio too high might be troublesome, as it can cause accidental ignition of the fuel-air mix. This is the reason why Otto cycle engines have lower compressions that Diesel engines. In a Diesel engine the mix ignites by compression instead of a spark.

7 0
3 years ago
What are the atomic binding force and energy? how do they relate to materials strength and thermal stability.
Elanso [62]

Answer:

As we know that every molecule is attached by a strong force .The force required to disassemble the atoms is know as atomic binding force or we can say that the force required to disassemble the electron from atoms is known as binding force.On the other hand the energy require to doing this is known as atomic binding energy.

If the binding force is high then it will become difficult to disassemble thermally as well as mechanically.So we can say that it have direct relationship with   materials strength and thermal stability.

7 0
3 years ago
Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes
Maru [420]

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).

5 0
3 years ago
Other questions:
  • Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1 5 1208C, p1 5
    15·1 answer
  • If a steel cable is rated to take 800-lb and the steel has a yield strength of 90,000psi, what is the diameter of the cable?
    12·1 answer
  • Define initial set and final set. Briefly discuss one method used to determine them. The following laboratory tests are performe
    12·1 answer
  • 4. A 1 m3 rigid tank has propane at 100 kPa, 300 K and connected by a valve to another tank of 0.5 M3 with propane at 250 kPa, 4
    11·1 answer
  • This is a multi-part question. Once an answer is submitted, you will be unable to return to this part As steam is slowly injecte
    15·1 answer
  • Your coworker was impressed with the efficiency you showed in the previous problem and would like to apply your methods to a pro
    5·1 answer
  • Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 300 kPa, and a velocity of 25 m/s. At the exit, the
    11·1 answer
  • How do you connect several springs to increase the equivalent stiffness? What is one example from industry or other real-life si
    7·1 answer
  • The acceleration of a point is given. a = 20 t m/s2 When t=0, s = 50 m and v = -8 m/s. What are the position and velocity of the
    13·1 answer
  • I just wanted to say thanks you to Brainly. This website is a huge help!
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!