If both the ram air input and drain hole of the pitot system become blocked, the indicated airspeed will: a) increase during a climb.
<h3>What is a
ram air input?</h3>
A ram air input can be defined as an air intake system which is designed and developed to use the dynamic air pressure that is created due to vehicular motion, or ram pressure, in order to increase the static air pressure within the intake manifold of an internal combustion engine of an automobile.
This ultimately implies that, a ram air input allows a greater mass-flow of air through the engine of an automobile, thereby, increasing the engine's power.
In conclusion, indicated airspeed will increase during a climb when both the ram air input and drain hole of the pitot system become blocked.
Read more on pilots here: brainly.com/question/10381526
#SPJ1
Complete Question:
If both the ram air input and drain hole of the pitot system become blocked, the indicated airspeed will
a) increase during a climb
b) decrease during a climb
c) remain constant regardless of altitude change
Answer:
52, 50, 54, 54, 56
Explanation:
The "stem" in this scenario is the tens digit of the number. Each "leaf" is the ones digit of a distinct number with the given tens digit.
5 | 20446 represents the numbers 52, 50, 54, 54, 56
Complying with DSEAR involves:
Assessing risks. ...
Preventing or controlling risks. ...
Control measures. ...
Mitigation. ...
Preparing emergency plans and procedures. ...
Providing information, instruction and training for employees. ...
Places where explosive atmospheres may occur ('ATEX' requirements)
hse uk
Answer: the increase in the external resistor will affect and decrease the current in the circuit.
Explanation: A battery has it own internal resistance, r, and given an external resistor of resistance, R, the equation of typical of Ohm's law giving the flow of current is
E = IR + Ir = I(R + r)........(1)
Where IR is the potential difference flowing in the external circuit and Or is the lost voltage due to internal resistance of battery. From (1)
I = E/(R + r)
As R increases, and E, r remain constant, the value (R + r) increases, hence the value of current, I, in the external circuit decreases.