Answer & Explanation:
function Temprature
NYC=[33 33 18 29 40 55 19 22 32 37 58 54 51 52 45 41 45 39 36 45 33 18 19 19 28 34 44 21 23 30 39];
DEN=[39 48 61 39 14 37 43 38 46 39 55 46 46 39 54 45 52 52 62 45 62 40 25 57 60 57 20 32 50 48 28];
%AVERAGE CALCULATION AND ROUND TO NEAREST INT
avgNYC=round(mean(NYC));
avgDEN=round(mean(DEN));
fprintf('\nThe average temperature for the month of January in New York city is %g (F)',avgNYC);
fprintf('\nThe average temperature for the month of January in Denvar is %g (F)',avgDEN);
%part B
count=1;
NNYC=0;
NDEN=0;
while count<=length(NYC)
if NYC(count)>avgNYC
NNYC=NNYC+1;
end
if DEN(count)>avgDEN
NDEN=NDEN+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in New York city was above the average',NNYC);
fprintf('\nDuring %g days, the temprature in Denvar was above the average',NDEN);
%part C
count=1;
highDen=0;
while count<=length(NYC)
if NYC(count)>DEN(count)
highDen=highDen+1;
end
count=count+1;
end
fprintf('\nDuring %g days, the temprature in Denver was higher than the temprature in New York city.\n',highDen);
end
%output
check the attachment for additional Information
The type of boot authentication that is more secure is Unified Extensible Firmware Interface
Unified Extensible Firmware Interface help to provide a computer booting that is more secured.
Unified Extensible Firmware Interface is a computer software program that work hand in hand with an operating system, it main function is to stop a computer system from boot with an operating system that is not secured.
For a computer system to boot successfully it means that the Operating system support the Unified Extensible Firmware Interface because it secured.
Inconclusion The type of boot authentication that is more secure is Unified Extensible Firmware Interface
Learn more here :
brainly.com/question/24750986
Answer:
The costs to run the dryer for one year are $ 9.03.
Explanation:
Given that the clothes dryer in my home has a power rating of 2250 Watts, and to dry one typical load of clothes the dryer will run for approximately 45 minutes, and in Ontario, the cost of electricity is $ 0.11 / kWh, to calculate the costs to run the dryer for one year the following calculation must be performed:
1 watt = 0.001 kilowatt
2250/45 = 50 watts per minute
45 x 365 = 16,425 / 60 = 273.75 hours of consumption
50 x 60 = 300 watt = 0.3 kw / h
0.3 x 273.75 = 82.125
82.125 x 0.11 = 9.03
Therefore, the costs to run the dryer for one year are $ 9.03.
The brakes are being bled on a passenger vehicle with a disc/drum brake system is described in the following
Explanation:
1.Risk: Continued operation at or below Rotor Minimum Thickness can lead to Brake system failure. As the rotor reaches its minimum thickness, the braking distance increases, sometimes up to 4 meters. A brake system is designed to take kinetic energy and transfer it into heat energy.
2.Since the piston needs to be pushed back into the caliper in order to fit over the new pads, I do open the bleeder screw when pushing the piston back in. This does help prevent debris from traveling back through the system and contaminating the ABS sensors
3.There are three methods of bleeding brakes: Vacuum pumping. Pressure pumping. Pump and hold.
4,Brake drag is caused by the brake pads or shoes not releasing completely when the brake pedal is released. ... A worn or corroded master cylinder bore causes excess pedal effort resulting in dragging brakes. Brake Lines and Hoses: There may be pressure trapped in the brake line or hose after the pedal has been released.
Answer:
a)
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b) 3.1 secs
Explanation:
a) Determine the normal times in TMUs for these motion elements
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b ) Determine the total time for this work element in seconds
first we have to determine the total TMU = ∑ TMU = 86.4 TMU
note ; 1 TMU = 0.036 seconds
hence the total time for the work in seconds = 86.4 * 0.036 = 3.1 seconds