Gravitational force is much weaker, because it is the force of gravity, or the force that makes smaller objects be pulled towards a much bigger one with a certain amount of force.
Now strong nuclear force, which is very strong, keeps the atomic particles in an atom from separating, and the reason it is so powerful is because the particles in an atom repel each other and this force keeps them from doing .that
Answer:
To calculate the pressure when temperature and volume has changed, we use the equation given by combined gas law. The equation follows:
\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}
T
1
P
1
V
1
=
T
2
P
2
V
2
where,
P_1,V_1\text{ and }T_1P
1
,V
1
and T
1
are the initial pressure, volume and temperature of the gas
P_2,V_2\text{ and }T_2P
2
,V
2
and T
2
are the final pressure, volume and temperature of the gas
We are given:
\begin{gathered}P_1=760mmHg\\V_1=175L\\T_1=15^oC=[15+273]K=288K\\P_2=640mmHg\\V_2=198L\\T_2=?K\end{gathered}
P
1
=760mmHg
V
1
=175L
T
1
=15
o
C=[15+273]K=288K
P
2
=640mmHg
V
2
=198L
T
2
=?K
Putting values in above equation, we get:
\begin{gathered}\frac{760mmHg\times 175L}{288K}=\frac{640mmHg\times 198L}{T_2}\\\\T_2=274K\end{gathered}
288K
760mmHg×175L
=
T
2
640mmHg×198L
T
2
=274K
Hence, the temperature when the volume and pressure has changed is 274 K
Answer:
E - Atomic mass is calculated by weighted atomic average using all the isotope data available.
G - Mass number is equal to the sum of protons and electrons in an atom.
Explanation:
Take an element

- Mass no is 25 and atomic no is 12.
The first one, <span>6H2O + 6CO2 → 6O2 + C6H12O6 is.</span>