The mass of CO₂ gas produced during the combustion of one gallon of octane is 8.21 kg.
The given parameters:
- <em>Density of the octane, ρ = 0.703 g/ml</em>
- <em>Volume of octane, v = 3.79 liters</em>
<em />
The mass of the octane burnt is calculated as follows;

The combustion reaction of octane is given as;

From the reaction above:
228.46 g of octane -------------------> 704 g of CO₂ gas
2,664.37 of octane --------------------> ? of CO₂ gas

Thus, the mass of CO₂ gas produced during the combustion of one gallon of octane is 8.21 kg.
Learn more about combustion of organic compounds here: brainly.com/question/13272422
Before proceeding, we should write the reaction equation to better understand what is happening:
2AgNO₃ + Na₂S → Ag₂S + 2NaNO₃
Now, we may apply the law of conservation of mass, due to which the total mass before a chemical reaction is equivalent to the total mass after a chemical reaction. Therefore:
Mass of silver nitrate + mass of sodium sulfide = mass of silver sulfide + mass of sodium nitrate
Mass of silver nitrate + 156.2 = 595.8 + 340
Mass of silver nitrate = 779.6 grams
Answer:
Endothermic
It absorbs heat
1.20 × 10³ kJ
Explanation:
Let's consider the following thermochemical equation.
2 H₂O(l) → 2 H₂(g) + O₂(g) ΔH = 572 kJ
Since ΔH > 0, the reaction is endothermic, that is, it absorbs heat when H₂O reacts.
572 kJ are absorbed when 36.03 g of water react. The heat absorbed when 75.8 g of H₂O react is:
75.8 g H₂O × (572 kJ/36.03 g H₂O) = 1.20 × 10³ kJ
There are 3 sig figs. 8 and 2 are obvious. The ending 0 is significant because it is at the end of a decimal number, and doesn't have to be measured.