Oxidation state of Pb in PbO2 is +4.
Oxidation state of Pb in PbCl2 is +2.
Oxidation state of Pb in Pb2O is +1.
Oxidation state of Pb in Pb4O3 is +6/4.
Hence option A. PbO2 is correct.
Hope this helps, have a nice day!
The integrated rate law expression for a first order reaction is
![ln\frac{[A_{0}]}{[A_{t}]}=kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D%3Dkt)
where
[A0]=100
[At]=6.25
[6.25% of 100 = 6.25]
k = 9.60X10⁻³s⁻¹
Putting values

taking log of 100/6.25
100/6.25 = 16
ln(16) = 2.7726
Time = 2.7726 / 0.0096 = 288.81 seconds
Answer:
5 moles of Argon is present in the mixture.
Explanation:
Total pressure of the gaseous mixture = 4 atm
Total number of moles = 16
Partial pressure of Ne = 2.75 atm
By Dalton's law of partial pressure, the total pressure of gaseous mixture is the sum of partial pressures of individual gases which are non-reactive.
Hence:

Also :
Partial pressure = mole fraction*total pressure



∴Number of moles of Argon = 5
440 hertz = 440/seconds
1/440 seconds = period of the sound wave.
so Answer is 2.2727272* 10^-3 second or 1/440 seconds