Answer:
The average rate of the reaction in terms of disappearance of A is 0.0004 M/s.
Explanation:
Average rate of the reaction is defined as ratio of change in concentration of reactant with respect to given interval of time.
![R_{avg}=-\frac{[A]_2-[A]_1}{t_2-t_1}](https://tex.z-dn.net/?f=R_%7Bavg%7D%3D-%5Cfrac%7B%5BA%5D_2-%5BA%5D_1%7D%7Bt_2-t_1%7D)
Where :
= initial concentration of reactant at
.
= Final concentration of reactant at
.
2A+3B → 3C+2D
![R_{avg}=-\frac{1}{2}\frac{[A]_2-[A]_1}{t_2-t_1}](https://tex.z-dn.net/?f=R_%7Bavg%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5BA%5D_2-%5BA%5D_1%7D%7Bt_2-t_1%7D)
The concentration of A at (
) = 
The concentration of A at (
) = 
The average rate of reaction in terms of the disappearance of reactant A in an interval of 0 seconds to 20 seconds is :

The average rate of the reaction in terms of disappearance of A is 0.0004 M/s.
Answer:
It is used to measure size or distance.
Answer is: amount of sugar in milk chocolade is 3333 mg.
To solve this question, make proportion: if 12,00 grams of milk chocolate contain 8,00 grams of sugar, than 5,00 grams contain:
12,000 g : 8,000 g = 5,000 g : m(sugar).
12,000 g · m(sugar) = 8,000 g · 5,000 g.
m(sugar) = 40,000 ÷ 12,000.
m(sugar) = 3,333 g = 3333 mg.
Answer:
molecules of water are produced.
Explanation:
To calculate the moles :
The balanced chemical reaction is:
According to stoichiometry :
2 moles of
produce = 3 moles of
Thus 0.707 moles of
will produce=
of
According to avogadro's law, 1 mole of every substance contains avogadro's number
of particles.
Thus 1.06 moles of
contains =
molecules