Answer:
Explanation:
Cu²⁺ + 2e⁻ → Cu ( copper gets reduced )
Cu → Cu²⁺ + 2e⁻ ( copper gets oxidized )
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
Na₂CO₃ + H₃PO₄ → Na₂HPO₄ + CO₂ + H₂O
The oxidation state of carbon on reactant side is +4. while on product side is also +4 so it neither oxidized nor reduced.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
I found the attached image with the same statement of your question and think it may be very useful for you that I use it to show how to answer this question (furthermore I think it may be the same reaction that you forgot to include).
As you can see, there are one image on the left side and other image on hte right side of the figure.
Those images contains drawings that represent molecules and a legend that permit you to distinguish the kind of atoms in each molecule.
Using that, you can indicate the chemical reaction as the transformation of the molecules on the left side onto the molecules on the right side:
Left side:
3 molecules of CH4 and 3 molecules of N2Cl4
Right side:
3 molecules of CCl4, 3 molecules of N2 and 6 molecules of H2
That is represented as:
3CH4 + 3 N2Cl4 -----> 3 CCl4 + 3N2 + 6H2And that is the balanced chemical equation for the reaction shown in the figured attached.I hope this is useful for you..
Answer:
11.45kcal/g
2.612 × 10³ kcal
Explanation:
When a compound burns (combustion) it produces carbon dioxide and water. The combustion of 2-methylheptane can be represented by the following balanced equation:
2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O
It releases 1.306 × 10³ kcal every 1 mol of C₈H₁₈ that is burned.
<em>What is the heat of combustion for 2-methylheptane in kcal/gram?</em>
We know that the molar mass of C₈H₁₈ is 114.0g/mol. Then, using proportions:

<em>How much heat will be given off if molar quantities of 2-methylheptane react according to the following equation? 2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O</em>
In this equation we have 2 moles of C₈H₁₈. So,

Answer:
% purity of limestone = 96.53%
Explanation:
Question (4).
Weight of impure CaCO₃ = 25.9 g
Molecular weight of CaCO₃ = 40 + 12 + 3(16)
= 100 g per mole
We know at S.T.P. number of moles of CO₂ = 1 and volume = 22.4 liters
From the given reaction, 1 mole of CaCO₃ reacts with 1 mole or 22.4 liters of
CO₂.
∵ 22.4 liters of CO₂ was produced from CaCO3 = 100 g
∴ 1 liter of CO₂ will be produced by CaCO₃ = 
∴ 5.6 liters of CO₂ will be produced by CaCO₃ = 
= 25 g
Therefore, % purity of CaCO₃ = 
= 
= 96.53 %