In deserts, wind often causes weathering by blowing sand and other material against cliffs and large rocks. This wears them down and creates more bits of sand and dust. Over time, the rock is scraped and polished away. ... When a gust of wind blows, it picks up sand and other bits of material.
Answer:
a. [Na₂CrO₄] = 0.10 M
b. 0.017 moles of KBr
Explanation:
Molarity means a sort of concentration which indicates the moles of solute over 1L of solution.
We determine the moles of solute: 12.5 g / 162g/mol = 0.0771 moles
We convert the volume of solution from mL to L = 750 mL . 1L/1000mL = 0.750L
Molarity (mol/L) → 0.0771 mol / 0.750L = 0.10 M
b. In order to determine the moles of solute, with the molarity of solution and the volume we assume:
Molarity = moles of solute /volume of solution
Then, Molarity . Volume of solution (L) = moles of solute
We convert the volume of solution from mL to L = 150 mL . 1L/1000mL = 0.150L
0.112 mol/L . 0.150L = Moles of solute → 0.017 moles of KBr
Answer:
1.10 × 10⁻¹² m
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
Speed of Light = Wavelength times Frequency
Explanation:
<u>Step 1: Define</u>
ν = 2.73 × 10²⁰ Hz
<u>Step 2: Find wavelength</u>
3.0 × 10⁸ m/s = λ(2.73 × 10²⁰ Hz)
λ = 1.0989 × 10⁻¹² m
<u>Step 3: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules.</em>
1.0989 × 10⁻¹² m ≈ 1.10 × 10⁻¹² m
Answer : The current passing between the electrodes is, 
Explanation :
First we have to calculate the charge of sodium ion.

where,
q = charge of sodium ion
n = number of sodium ion = 
e = charge on electron = 
Now put all the given values in the above formula, we get:

Now we have to calculate the charge of chlorine ion.

where,
q' = charge of chlorine ion
n = number of chlorine ion = 
e = charge on electron = 
Now put all the given values in the above formula, we get:

Now we have to calculate the current passing between the electrodes.



Thus, the current passing between the electrodes is, 