CaCl₂ → Ca²⁺ + 2Cl⁻
∑=1+2=3
D) 3 mol
NH3 because the molecule in the room is more solid than and room temperature
Given :
0.00072 M solution of
at
.
To Find :
The concentration of
and pOH .
Solution :
1 mole of
gives 2 moles of
ions .
So , 0.00072 M mole of
gives :
![[OH^-]=2 \times 0.00072\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D2%20%5Ctimes%200.00072%5C%20M)
![[OH^-]=0.00144\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00144%5C%20M)
![[OH^-]=1.44\times 10^{-3}\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.44%5Ctimes%2010%5E%7B-3%7D%5C%20M)
Now , pOH is given by :
![pOH=-log[OH^-]\\\\pOH=-log[1.44\times 10^{-3}]\\\\pOH=2.84](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D%5C%5C%5C%5CpOH%3D-log%5B1.44%5Ctimes%2010%5E%7B-3%7D%5D%5C%5C%5C%5CpOH%3D2.84)
Hence , this is the required solution .
The molar mass of methylammonium bromide is 111u.
<h3>What is molar mass?</h3>
The molar mass is defined as the mass per unit amount of substance of a given chemical entity.
Multiply the atomic weight (from the periodic table) of each element by the number of atoms of that element present in the compound.
Add it all together and put units of grams/mole after the number.
Atomic weight of H is 1u
Atomic weight of N is 14u
Atomic weight of C is 12u
Atomic weight of Br is 79u
Calculating molar mass of
=2(1 x3+ 14+12+ 1 x 3 +79) = 111u
Hence, the molar mass of methylammonium bromide is 111u.
Learn more about molar mass here:
brainly.com/question/12127540
#SPJ1