Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
For hanger we know that it will have tension force upwards while it has downwards its weight so we will have

so we have

Part b)
now for car that is rolling on the floor the net force is given as



Part c)
now we know that the cart and the hanger both are connected to each other
so they must have same acceleration
so we will have



Part d)
now we know that
M = 2.40 kg
m = 0.50 kg
so we will have


Answer:
The probability that it will take a week for it three wet weather on 3 separate days is 0.06166 and its standard deviation is 0.9447
Explanation:
We are given that A city of Punjab has 15 percent chance of wet weather on any given day.
So, Probability of wet weather = 0.15
Probability of not being a wet weather = 1-0.15 =0.85
We are supposed to find probability that it will take a week for it three wet weather on 3 separate days
Total number of days in a week = 7
We will use binomial over here
n = 7
p =probability of failure = 0.15
q = probability of success=0.85
r=3
Formula :

Standard deviation =
Standard deviation =
Standard deviation =0.9447
Hence The probability that it will take a week for it three wet weather on 3 separate days is 0.06166 and its standard deviation is 0.9447
Answer:
TIME he applied the fertilizer to each plant
Explanation:
Independent variable in an experiment is the variable that is subject to change or manipulation by the experimenter. In this experiment, Bob wanted to investigate the effects of plant fertilizer. Bob sets up the experiment by applying the fertilizer to each plant at DIFFERENT TIMES i.e. plant 1-every morning, plant 2-once a week, plant 3-never.
Based on this, it is obvious that the independent or manipulated variable is the TIME at which he applied the fertilizer. On the other hand, the dependent or measured variable is the height of the plants.
Answer:

Explanation:
Static friction occurs when an object initially starts at rest. When the surfaces of the materials touch, the microscopic unevenness interlock greatest with each other, causing the most friction out of the three.
During sliding friction, an object is already moving or in motion. The microscopic surfaces still interlock, but because the object is in motion, it has a momentum. Therefore, the magnitude of sliding friction is less than that of static friction.
Rolling friction occurs when an object rolls across some surface. Rather than surfaces interlocking, rolling friction is caused by the constant distortion of surfaces. As it rolls, the surfaces of the object are constantly wrapping and changing. This distortion causes the rolling friction. However, it is much less in magnitude when compared to static or sliding friction.