Only their wavelength does.
Blue light waves have only roughly half the wavelength of red light waves, and the so-called "microwaves" are the radio waves with the shortest wavelengths.
Answer:
To create a second harmonic the rope must vibrate at the frequency of 3 Hz
Explanation:
First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,
f₁ = v/2L
where,
v = speed of wave = 36 m/s
L = Length of rope = 12 m
f₁ = fundamental frequency
Therefore,
f₁ = (36 m/s)/2(12 m)
f₁ = 1.5 Hz
Now the frequency of nth harmonic is given in general, as:
fn = nf₁
where,
fn = frequency of nth harmonic
n = No. of Harmonic = 2
f₁ = fundamental frequency = 1.5 Hz
Therefore,
f₂ = (2)(1.5 Hz)
<u>f₂ = 3 Hz</u>

- c. The weight of an object on the moon will be the same as its weight on Earth. It is false because the weight of an on the moon will be 1/6 th times its weight on Earth.
- d. The weight of an object is its mass multiplied by the force of gravity. The statement is false because the formula of weight is mass × acceleration due to gravity, not force of gravity.
- e. The mass and weight of an object are the same thing. The statement is false because mass means a body of matter. While weight of an object is its mass multiplied by the force of gravity.
- f. The mass of an object is the force of gravity acting upon an object. It is false because it will be the weight of the object not mass.
- So, the answers are c, d, e and f.
Hope you could understand.
If you have any query, feel free to ask.
Answer:
The transverse component of acceleration is 26.32
where as radial the component of acceleration is 8.77 
Explanation:
As per the given data
u=π/4 rad
ω=u'=2 rad/s
α=u''=4 rad/s

So the transverse component of acceleration are given as

Here


So

The transverse component of acceleration is 26.32 
The radial component is given as

Here

So

The radial component of acceleration is 8.77 
You find yourself in a place that is unimaginably <u>hot and dense</u>. A r<u>apidly changing</u><u> gravitational field</u><u> </u>randomly warps space and time. Gripped by these huge fluctuations, you notice that there is but a single, unified force governing the universe, you are in the early universe before the Planck time.
<h3>What is Planck time?</h3>
The Planck time is approximately<u> 10^-44 seconds</u>. The smallest time interval, or "zeptosecond," that has so far been measured is <u>10^-21 seconds</u>. A photon traveling at the speed of light would need one Planck time <u>to traverse a distance of one </u><u>Planck length</u>.
<h3>What is Planck length?</h3>
Planck units are a set of measuring units used only in particle physics and physical cosmology. They are defined in terms of <u>four universal </u><u>physical constants</u> in such a way that when expressed in terms of these units, these physical constants have the numerical value 1. These units are a system of natural units because its definition is <u>based on characteristics of nature</u>, more especially the characteristics of free space, rather than a selection of prototype object, as was the case with Max Planck's original 1899 proposal. They are pertinent to the study of unifying theories like quantum gravity.
To learn more about Plank time:
brainly.com/question/23791066
#SPJ4