Answer:
E = 0.0130 V/m.
Explanation:
The electric field is related to the potential difference as follows:

<u>Where:</u>
E: is electric field
ΔV: is the potential difference = 3.95 mV
d: is the distance of a person's chest = 0.305 m
Then, the electric field is:

Therefore, the maximum electric field created is 0.0130 V/m.
I hope it helps you!
Answer:
North of west
Explanation:
Given
40,000-ton luxury line traveling 20 knots towards west and
60,000 ton freighter traveling towards North with 10 knots
suppose v is the common velocity after collision
conserving momentum in west direction

suppose the final velocity makes \theta angle with x axis

Conserving Momentum in North direction


divide 1 and 2


so search in the area
North of west to find the ship
Answer:
Explanation:
v² = u² + 2as
v = 0
u = 96 / 3.6 = 26.7 m/s
0² = 26.7² + 2a100
a = -3.5555555... ≈ -3.6 m/s²
the negative sign indicated the acceleration vector opposes the (assumed positive) initial velocity vector direction.
<h2>
Answer: A</h2>
Explanation because the distance covered is equal time intervals is the same or equal.
<h2>Answer</h2>
option D)
2.4 seconds
<h2>Explanation</h2>
Given in the question,
mass of car = 1200kg
speed of car = 19m/s
Force due to direction of travel
F = ma
= 12000(a)
Force to due frictional force in reverse direction
-F = mg(friction coefficient)
= -12000(9.81)(0.8)
<h2>
-mg(friction coefficient) = ma </h2>
(cancelling mass from both side of equation)
g(0.8) = a
(9.81)(0.8) = a
a = 7.848 m/s²
<h2>Use Newton Law of motion</h2><h3>vf - vo = a • t</h3>
where vf = final velocity
vo = initial velocity
a = acceleration
t = time
0 - 19 = 7.8(t)
t = 19/7.8
= 2.436 s
≈ 2.4s