Answer:
Option D is the correct answer.
Explanation:
Since value of angular acceleration is constant, the body has only centripetal acceleration.
Centripetal acceleration

We have radius = 7.112 cm = 0.07112 m
Frequency, f = 1975 rpm = 32.92 rps
Angular frequency, ω = 2πf = 2 x π x 32.92 = 206.82 rad/s
Substituting in centripetal acceleration equation,

Option D is the correct answer.
Explanation:
given,
mass of one planet (m1)=2*10^23 kg
mass of another planet (m2)=5*10^22kg
distance between them(d)=3*10^16m
gravitational constant(G)=6.67*10^-11Nm^2kg^-2
gravitational force between them(F)=?
we know,
F=Gm1m2/d^2
or, F=6.67*10^-11*2*10^23*5*10^22/(3*10^16)^2
or, F=6.67*2*5*10^-11+23+22/3*3*10^32
or, F=66.7*10^34/9*10^32
or, F=7.41*10^34-32
•°• F=7.41*10^2
thus, the gravitational force between them is 7.14*10^2
Answer: it becomes a positive ion
Explanation:
So, when an atom loses 2 electrons there will be no change in the number of neutrons. Therefore, an isotope will not form. Thus, it is concluded that when an atom with no charge loses two electrons, it becomes a positive ion.
Answer:
20 degrees.
Explanation:
From Snell’s law of refraction:
sinθ1•n1 = sinθ2•n2
where θ1 is the incidence angle, θ2 is the refraction angle, n1 is the refraction index of light in medium1, and n2 is the refraction index for virgin olive oil. The incidence angle of the red light is θ1 = 30 degrees.
The red light is in air as medium1, so n1 (air) = 1.00029
So, to find θ2, the refracted angle:
sinθ1•1.00029 = sinθ2•1.464
sin(30)•1.00029 / 1.464 = sinθ2
0.5•1.00029 / 1.464 = sinθ2
sinθ2 = 0.3416291
θ2 = arcsin(0.3416291)
θ2 = 19.976 degrees
To the nearest degree,
θ2 = 20 degrees.
Maybe this will help you out:
Momentum is calculate by the formula:

Where:
P = momentum
m = mass
v = velocity
The SI unit:

So the unit of momentum would be:

Impulse is defined as the change in momentum or how much force changes momentum. It can be calculate with the formula:
I = FΔt
where:
I = impulse
F = Force
Δt = change in time
The SI unit:
F = Newtons (N) or 
t = Seconds (s)
So the unit of impulse would be derived this way:
I = FΔt
I =
x 
or

You can then cancel out one s each from the numerator and denominator and you'll be left with:

So then:
Momentum: Impulse
