1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
3 years ago
12

A box contains about 6.77 x 1021 hydrogen

Physics
1 answer:
Grace [21]3 years ago
3 0

Answer:

54j

Explanation:

You might be interested in
If the net force acting on an object is 0 N, you can be sure thr forces acting on the object are,
Bas_tet [7]

Answer:

A. Balanced

Explanation:

7 0
3 years ago
At resonance, what is impedance of a series RLC circuit? less than R It depends on many other considerations, such as the values
denis23 [38]

Answer:

at resonance impedence is equal to resistance and quality factor is dependent on R L AND C all

Explanation:

we know that for series RLC circuit impedance is given by

Z=\sqrt{R^2+\left ( X_L-X_C \}right )^2

but we know that at resonance X_L=X_C  

putting  X_L=X_C in impedance formula , impedance will become

Z=R so at resonance impedance of series RLC is equal to resistance only

now quality factor of series resonance is given by

Q=\frac{\omega L}{R}=\frac{1}{\omega CR}=\frac{1}{R}\sqrt{\frac{L}{C}}  so from given expression it is clear that quality factor depends on R L and C

3 0
3 years ago
A 500 kg motorcycle accelerates at a rate of 2 m/s .how much force was applied to the motorcycle?
Aleksandr [31]

Answer:

by using formula F=ma which is m stand for mass a stand for acceleration. so 500kg × 2 ms^-2

8 0
3 years ago
Read 2 more answers
A 22kg Accelerates at a rate of 2.3 m/s. What is the magnitude of the net force acting on the bike?
Tcecarenko [31]

magnitude of the net force = mass x acceleraton

                                             = 22 x 2.3

                                             =50.6 N

7 0
3 years ago
Two lasers, one red (with wavelength 633.0 nmnm) and the other green (with wavelength 532.0 nmnm), are mounted behind a 0.150-mm
Ratling [72]

(a) The screen  is 3.20m from the split.

(b) The closest minima for green, distance Δy = 0.45 cm.

When a wave hits a barrier or opening, numerous events are referred to as diffraction. It is described as the interference or bending of waves via an aperture or around the corners of an obstruction into the area that forms the geometric shadow of the obstruction or aperture.

(a)Equation of minima = sinθ  = mλ/α

Given, m = 3, λ = 6.33X10⁻⁷, α = 0.00015

Putting the values in formula to get θ.

  θ = sin⁻¹ ( \frac{3 X 6.33X10^{-7} }{0.00015} ) = 0.01266 rad

triangle need to be drawn to find relationship between θ, y$ and L

tan(θ) = y/L  where; y = 4.05 cm

L = y/tan(θ) = 3.20

Hence, the screen is 3.20m from the split.

(b) Find the closest minima for green

minima equation is sinθ  = mλ/α where, m = 4 (minima with smallest distance)

sinθ  = 4λ/α

θ = sin⁻¹ (\frac{4X6.33X10^{-7} }{0.00015}) = 0.01688 rad

Calculate L using

tanθ = y/L

  L = 4.5 cm

From equation subtract y₃ from y:

                 4.50 cm - 4.05 cm = 0.45 cm

Hence, distance Δy = 0.45 cm.

Learn more about the Diffraction with the help of the given link:

brainly.com/question/12290582

#SPJ4

I understand that the question you are looking for is "Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm slit. On the ot

Question

Two lasers, one red (with wavelength 633.0 nm) and the other green (with wavelength 532.0 nm), are mounted behind a 0.150-mm slit. On the other side of the slit is a white screen. When the red laser is turned on, it creates a diffraction pattern on the screen.

a. The distance y3,red from the center of the pattern to the location of the third diffraction minimum of the red laser is 4.05 cm. How far L is the screen from the slit? Express this distance L in meters to three significant figures.

b. With both lasers turned on, the screen shows two overlapping diffraction patterns. The central maxima of the two patterns are at the same position. What is the distance Δy between the third minimum in the diffraction pattern of the red laser (from Part A) and the nearest minimum in the diffraction pattern of the green laser?

5 0
1 year ago
Other questions:
  • What type of telescope is shown in Figure 24-2
    15·2 answers
  • A hot-air balloon is ascending at the rate of 10 m/s and is 74 m above the ground when a package is dropped over the side. (a) H
    8·1 answer
  • What are infrasound usages​
    15·2 answers
  • The ideal mechanical advantage of a pulley system is equal to the?
    7·2 answers
  • 1. A material that is malleable and conducts electricity is most likely : (A) wood (B) ice (C) a metal (D) motor oil
    10·1 answer
  • This is from educake but
    5·1 answer
  • Begin any simulation, and turn on Gravity Force in the central menu on the right. The gravity force arrow shows the direction an
    12·1 answer
  • Explain how energy is transferred in an impact situation such as a car crash.
    15·1 answer
  • What is the distance between lines on a diffraction grating that produces a second-order maximum for 760-nm red light at an angl
    7·1 answer
  • Question 20 (4 points)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!