when liquid water changes into solid ice, it increases in mass
Answer:
In the given chemical reaction:
Species Oxidized: I⁻
Species Reduced: Fe³⁺
Oxidizing agent: Fe³⁺
Reducing agent: I⁻
As the reaction proceeds, electrons are transferred from I⁻ to Fe³⁺
Explanation:
Redox reaction is a chemical reaction involving the simultaneous movement of electrons thereby causing oxidation of one species and reduction of the other species.
The chemical species that <u><em>gets reduced by gaining electrons </em></u><u>is called an </u><u><em>oxidizing agent</em></u>. Whereas, the chemical species that <u><em>gets oxidized by losing electrons </em></u><u>is called a </u><u><em>reducing agent</em></u><u>.</u>
Given redox reaction: 2Fe³⁺ + 2I⁻ → 2Fe²⁺ + I₂
<u>Oxidation half-reaction</u>: 2 I⁻ + → I₂ + 2 e⁻ ....(1)
<u>Reduction half-reaction</u>: [ Fe³⁺ + 1 e⁻ → Fe²⁺ ] × 2
⇒ 2 Fe³⁺ + 2 e⁻ → 2 Fe²⁺ ....(2)
In the given redox reaction, <u>Fe³⁺ (oxidation state +3) accepts electrons and gets reduced to Fe²⁺ (oxidation state +2) and I⁻ (oxidation state -1) loses electrons and gets oxidized to I₂ (oxidation state 0).</u>
<u>Therefore, Fe³⁺ is the oxidizing agent and I⁻ is the reducing agent and the electrons are transferred from I⁻ to Fe³⁺.</u>
Answer:
Water will move out of the eggplant cells and the cells will shrink.
Explanation:
I found it on a Quizziz.
Phosphorus!!!! Hope this helps
Answer:
The net energy is 2.196 eV
Explanation:
Basically, the energy of an atom increases when it absorbs a photon. In addition, the wavelength of the emitted photon is longer such that the atom absorbed a net energy in the process.
Using:
ΔE = h*c*(1/λ
- 1/λ
)
where:
ΔE is the net energy in eV (electron-volt). 1 eV is equivalent to 1.602*
J.
h = 4.135*
eVs
c = 3*
m/s
λ
= 300 nm = 300*
m
λ
= 640 nm = 640*
m
Thus:
ΔE = 4.135*
eVs*3*
m/s*(
)
ΔE = 4.135*
*3*
*1.77*
eV = 2.196 eV