Answer:
Number 3,Concentration of hydrogen ions in solution.
Brainliest would be appreciated :))
<span><span>N2</span><span>O5</span></span>
Explanation!
When given %, assume you have 100 g of the substance. Find moles, divide by lowest count. In this case you'll end up with
<span><span>25.92 g N<span>14.01 g N/mol N</span></span>=1.850 mol N</span>
<span><span>74.07 g O<span>16.00 g O/mol O</span></span>=4.629 mol O</span>
The ratio between these is <span>2.502 mol O/mol N</span>, which corresponds closely with <span><span>N2</span><span>O5</span></span>.
Am so pro let it goo let it goooo
Hydrated salts are when salt crystals have water molecules bound. Anhydrous salts are when the water has been removed.
mass of water removed = hydrated salt - anhydrate salt
= 11.75 g - 9.25 g = 2.50 g
number of water moles = 2.50 g / 18 g/mol = 0.139 mol
number of cobalt (II) chloride moles = 9.25 g / 130 g/mol = 0.0712 mol
ratio of water moles to CoCl₂ moles - 0.139 mol / 0.0712 mol = 1.95
rounded off 2 moles of water for every 1 mol of CoCl₂
formula - CoCl₂.2H₂O
name - Cobalt(II) chloride dihydrate
Answer: D=8.27 g/cm³
Explanation:
Density is mass/volume. Mass is in grams and volume is in liters. In this case, the problem wants our volume to be in cm³. All we need to do is to make some conversions to convert kg/m³ to g/cm³.
With this equation, the m³ and kg cancel out, and we are left with g/cm³.
D=8.27 g/cm³