Answer:
hello your question is incomplete the options are missing
Determine the resultant velocity for the plane when it is travelling
i) To the east
ii) To the west
answer :i) 270 i
ii) -150 i
Explanation:
velocity of Airplane = 210 m/s
wind velocity = 60 m/s to the east
The resultant velocity for the plane when it is travelling
let the velocity of the wind = V2
velocity of the plane = v1
i) The resultant velocity for the plane when travelling to the east
Vr = V2 i + V1 i
Vr= 60i + 210i = 270i
ii) resultant velocity when the plane is travelling to the west
Vr = - V1 i + V2i
= -210i + 60 i = -150 i
Answer:
Those two horizontal lines.
Explanation:
Hello there!
In this case, when focusing on these heating curves, it is important to say they tend to have two constant-temperature sections and three variable-temperature sections. Thus, from lower to higher temperature, the first constant-temperature section corresponds to melting and the second one vaporization, whereas the three variable-temperature sections correspond to the heating of the solid until melting, the liquid until vaporization and the gas until the critical point.
In such a way, we infer that the boxes referred to constant temperature are referred to a gain in potential energy, that is, the two horizontal lines.
Regards!
Answer:
NaCi + LiCl is the correct answer
Answer:
The correct option is;
D)
Explanation:
The given reaction is presented as follows;
NH₄Cl (s) → NH₃ (g) + HCl (g) ΔH° = 176 kJ/mol, ΔS° = 0.285 kJ/(mol·K)
We note that the Gibbs free energy, ΔG° is represented by the following equation;
ΔG° = ΔH° - T·ΔS°
Where:
T = Temperature (Kelvin)
The reaction will be spontaneous for exergonic reactions, ΔG° < 0 and it will not be spontaneous for endergonic reaction, ΔG° > 0
At room temperature, T = 25 + 273.15 = 298.15 K
Which gives;
ΔG° = 176 - 298.15 × 0.285 = 91.03 kJ/mol which is > 0 Not spontaneous reaction
At 800°C, we have;
T = 273.15 + 800°C + 1073.15 K
ΔG° = 176 - 1073.15 * 0.285 = -129.85 kJ/mol which is < 0 the reaction will be spontaneous
The correct option is therefore, that at room temperature, the reaction is not spontaneous. However, at high temperatures. like 800 °C, the free energy value turns negative and this reaction becomes spontaneous.
Answer:
I dont know right now I'm busy