Answer: The change in boiling point for 397.7 g of carbon disulfide (Kb = 2.34°C kg/mol) if 35.0 g of a nonvolatile, nonionizing compound is dissolved in it is 
Explanation:
Elevation in boiling point:
where,
= boiling point of solution = ?
= boiling point of pure carbon disulfide=
= boiling point constant =
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte)
= mass of solute = 35.0 g
= mass of solvent (carbon disulphide) = 397.7 g
= molar mass of solute = 70.0 g/mol
Now put all the given values in the above formula, we get:
Therefore, the change in boiling point is 
Answer:
The correct answer is 0.206 moles
Explanation:
According to the given scenario, the calculation of the number of moles of ammonium chloride is available in the resulting solution is given below:
Given that
Amount of
is 11.0 grams
And, the volume is 235 mL
Now the molar mass of
is 53.49g/mol
So, the number of moles presented is
= 11.0 ÷ 53.49
= 0.206 moles
hence, the number of moles of ammonium chloride are available in the resulting solution is 0.206 moles
Electrons, everything is pretty much based around the likeliness of electrons to be swapped or shared between atoms
Answer:
Δ S = 26.2 J/K
Explanation:
The change in entropy can be calculated from the formula -
Δ S = m Cp ln ( T₂ / T₁ )
Where ,
Δ S = change in entropy
m = mass = 2.00 kg
Cp =specific heat of lead is 130 J / (kg ∙ K) .
T₂ = final temperature 10.0°C + 273 = 283 K
T₁ = initial temperature , 40.0°C + 273 = 313 K
Applying the above formula ,
The change in entropy is calculated as ,
ΔS = m Cp ln ( T₂ / T₁ ) = (2.00 )( 130 ) ln( 283 K / 313 K )
ΔS = 26.2 J/K