First convert grams to moles
using molar mass of butane that is 58.1 g
3.50g C4H10 x (1 mol
C4H10)/(58.1g C4H10) = 0.06024 mol C4H10 <span>
<span>Now convert moles to molecules by using Avogadro’s number
0.06024 mol C4H10 x (6.022x10^23 molecules C4H10)/(1 mol
C4H10) = 3.627x10^22 molecules C4H10
And there are 4 carbon atoms in 1 molecule of butane, so use
the following ratio:
3.627 x 10^22 molecules C4H10 x (4 atoms C)/(1 molecule
C4H10)
<span>= 1.45 x 10^23 atoms of carbon are present</span></span></span>
Answer:
P2I4 is otherwise known as "<em>Diphosphorus Tetraiodide</em>"
You have to use the equation q=mcΔT and solve for T(final).
T(final)=(q/mc)+T(initial)
q=the amount of energy absorbed or released (in this case 868J)
m=the mass of the sample (in this case 15.6g)
c= the specific heat capacity of the substance (in this case 2.41 J/g°C)
T(initial)=the initial temperature of the sample (in this case 21.5°C)
When you plug everything in, you should get 44.6°C.
Therefore the final temperature of ethanol is 44.6°C
I hope this helps. Let me know if anything is unclear.
Answer:
ΔH3 = 1/2 (629) - ΔH^0
Explanation:
Given data:
Bond energy of H2 = ΔH1 = 436 Kj/mol
Bond energy of Br2 = ΔH2 = 193 Kj/mol
To find:
Let bond energy of HBr = ΔH3 = ?
Equation:
H2 + Br2 → 2HBr
enthalpy of formation of HBr = ΔH1 + ΔH3 - 2(ΔH3)
ΔH^0 = 436 + 193 - 2(ΔH3)
(436 + 193) - ΔH^0 = 2(ΔH3)
ΔH3 = 1/2 (629) - ΔH^0
Answer: -
Kinetic energy.
Explanation: -
Solids have the least kinetic energy and the highest intermolecular force of attraction among the three states of matter.
When heat energy is supplied to the solid, the kinetic energy of the solid particles increases. At some point, the kinetic energy becomes comparable to the intermolecular force of attraction. At that point solids change into liquids.
When further heat energy is given, at certain point the kinetic energy becomes far greater than the intermolecular forces of attraction. At that point it becomes gas.