The unit for work is ENERGY
Answer:Amplitude:the maximum displacement or distance moved by a point on a vibrating body or wave measured from its equilibrium position. It is equal to one-half the length of the vibration path.Wave speed:Wave speed is the distance a wave travels in a given amount of time, such as the number of meters it travels per second. Wave speed is related to wavelength and wave frequency by the equation: Speed = Wavelength x Frequency. This equation can be used to calculate wave speed when wavelength and frequency are known.Wavelength:Wavelength is the distance between identical points (adjacent crests) in the adjacent cycles of a waveform signal propagated in space or along a wire. In wireless systems, this length is usually specified in meters (m), centimeters (cm) or millimeters (mm).Frequency:frequency, in physics, the number of waves that pass a fixed point in unit time; also, the number of cycles or vibrations undergone during one unit of time by a body in periodic motion.
Explanation:
Answer:

Explanation:
We are asked to find the mass of a sample of metal. We are given temperatures, specific heat, and joules of heat, so we will use the following formula.

The heat added is 4500.0 Joules. The mass of the sample is unknown. The specific heat is 0.4494 Joules per gram degree Celsius. The difference in temperature is found by subtracting the initial temperature from the final temperature.
- ΔT= final temperature - initial temperature
The sample was heated <em>from </em> 58.8 degrees Celsius to 88.9 degrees Celsius.
- ΔT= 88.9 °C - 58.8 °C = 30.1 °C
Now we know three variables:
- Q= 4500.0 J
- c= 0.4494 J/g°C
- ΔT = 30.1 °C
Substitute these values into the formula.

Multiply on the right side of the equation. The units of degrees Celsius cancel.

We are solving for the mass, so we must isolate the variable m. It is being multiplied by 13.52694 Joules per gram. The inverse operation of multiplication is division, so we divide both sides by 13.52694 J/g

The units of Joules cancel.


The original measurements have 5,4, and 3 significant figures. Our answer must have the least number or 3. For the number we found, that is the ones place. The 6 in the tenth place tells us to round the 2 up to a 3.

The mass of the sample of metal is approximately <u>333 grams.</u>
Answer:
one move parallel to the direction of the movement and the other move perpendicular to towards the direction of the move of wave..transverse and longitudinal wave
I think it’s “number” and “type”