The refractive index of water is

. This means that the speed of the light in the water is:

The relationship between frequency f and wavelength

of a wave is given by:

where v is the speed of the wave in the medium. The frequency of the light does not change when it moves from one medium to the other one, so we can compute the ratio between the wavelength of the light in water

to that in air

as

where v is the speed of light in water and c is the speed of light in air. Re-arranging this formula and by using

, we find

which is the wavelength of light in water.
The wavelength of light is
given as 463 nm or can also be written as 463 x 10^-9 m. [wavelength = ʎ]
We know that the speed of
light is 299 792 458 m / s or approximately 3 x 10^8 m / s. [speed of
light = c]
Given the two values, we can calculate
for the frequence (f) using the formula:
f = c / ʎ
Substituting the given
values:
f = (3 x 10^8 m / s) / 463 x
10^-9 m
f = 6.48 x 10^14 / s = 6.48 x
10^14 s^-1
<span>f = 6.48 x 10^14 Hz</span>
We use only one variable at a time to find the accurate result. We want to see how the result of experiment changes everytime with a single variable.
C
djjsksksndndjjsbdndnnamqkandbdbs