Answer:
v = 5.34[m/s]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.
Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.
E₁ = mechanical energy at initial state [J]

In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.
In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.
E₂ = mechanical energy at final state [J]

Now we can use the first statement to get the first equation:

where:
W₁₋₂ = work from the state 1 to 2.


where:
h = elevation = 1.5 [m]
g = gravity acceleration = 9.81 [m/s²]

![58 = v^{2} +29.43\\v^{2} =28.57\\v=\sqrt{28.57}\\v=5.34[m/s]](https://tex.z-dn.net/?f=58%20%3D%20v%5E%7B2%7D%20%2B29.43%5C%5Cv%5E%7B2%7D%20%3D28.57%5C%5Cv%3D%5Csqrt%7B28.57%7D%5C%5Cv%3D5.34%5Bm%2Fs%5D)
The weight of the box is (mass) x (gravity) = (50 kg) x (9.8m/s²) = 490 newtons.
If the box is sliding at constant speed, and not speeding up or slowing down,
that means that the horizontal forces on it add up to zero.
Since you're pushing on it with 53N in <em><u>that</u></em> direction, friction must be pulling
on it with 53N in the <u><em>other</em></u> direction.
The 53N of friction is (the weight) x (the coefficient of kinetic friction).
53N = (490N) x (coefficient).
Divide each side by 490N : Coefficient = (53N) / (490N) = 0.1082 .
Rounded to the nearest hundredth, that's <em>0.11 </em>. (choice 'd')
Seismic wave is the answer
<span>A change in the pressure of a gas results in a more significant change in volume than it would in a liquid. is the statement that accurately describes the property of gas. Gas only depends on how you store it. the bigger the space the wider gas can expand, the smaller the space, the more compress the gas can become.</span>
Answer:
Diagram C
Explanation:
We are given that Sulfur with atomic number 16.
We have to find that which diagram shows the electronic configuration of sulfur.
S=16
Its Diagram C