In Engineering, the thrust angle is checked by referencing: C. vehicle centerline.
<h3>What is a
thrust angle?</h3>
A thrust angle can be defined as an imaginary line which is drawn perpendicularly from the centerline of the rear axle of a vehicle, down the centerline.
This ultimately implies that, the thrust angle is a reference to the centerline (wheelbase) of a vehicle, and it confirms that the two wheels on both sides are properly angled within specification.
Read more on thrust angle here: brainly.com/question/13000914
#SPJ1
Answer:
1.505
Explanation:
cylindrical part of diameter d is loaded by an axial force P. This causes a stress of P/A, where A = πd2/4. If the load is known with an uncertainty of ±11 percent, the diameter is known within ±4 percent (tolerances), and the stress that causes failure (strength) is known within ±20 percent, determine the minimum design factor that will guarantee that the part will not fail.
stress is force per unit area
stress=P/A
A = πd^2/4.
uncertainty of axial force P= +/-.11
s=+/-.20, strength
d=+/-.04 diameter
fail load/max allowed
minimum design=fail load/max allowed
minimum design =s/(P/A)
sA/P
A=(
.96d^2)/4, so Amin=
(because the diameter at minimum is (1-0.04=0.96)
minimum design=Pmax/(sminxAmin)
1.11/(.80*.96^2)=
1.505
Answer:
Explanation:
Using the kinematics equation
to determine the velocity of car B.
where;
initial velocity
= constant deceleration
Assuming the constant deceleration is = -12 ft/s^2
Also, the kinematic equation that relates to the distance with the time is:

Then:

The distance traveled by car B in the given time (t) is expressed as:

For car A, the needed time (t) to come to rest is:

Also, the distance traveled by car A in the given time (t) is expressed as:

Relating both velocities:





t = 2.25 s
At t = 2.25s, the required minimum distance can be estimated by equating both distances traveled by both cars
i.e.



d + 104.625 = 114.75
d = 114.75 - 104.625
d = 10.125 ft
Answer:
Follow these five steps every time.
1.Wet your hands with clean, running water (warm or cold), turn off the tap, and apply soap.
2.Lather your hands by rubbing them together with the soap. Lather the backs of your hands, between your fingers, and under your nails.
3.Scrub your hands for at least 20 seconds. Need a timer? Hum the “Happy Birthday” song from beginning to end twice.
4.Rinse your hands well under clean, running water.
5.Dry your hands using a clean towel or air dry them.