1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naily [24]
2 years ago
9

A rigid tank contains an ideal gas at 40°C that is being stirred by a paddle wheel. The paddle wheel does 240 kJ of work on the

ideal gas. It is observed that the temperature of the ideal gas remains constant during this process as a result of heat transfer between the system and the surroundings at 30°C. Determine the entropy change of the ideal gas.
Engineering
1 answer:
Sergeu [11.5K]2 years ago
8 0

To solve the problem it is necessary to consider the concepts and formulas related to the change of ideal gas entropy.

By definition the entropy change would be defined as

\Delta S = C_p ln(\frac{T_2}{T_1})-Rln(\frac{P_2}{P_1})

Using the Boyle equation we have

\Delta S = C_p ln(\frac{T_2}{T_1})-Rln(\frac{v_1T_2}{v_2T_1})

Where,

C_p = Specific heat at constant pressure

T_1= Initial temperature of gas

T_2= Final temprature of gas

R = Universal gas constant

v_1= Initial specific Volume of gas

v_2= Final specific volume of gas

According to the statement, it is an isothermal process and the tank is therefore rigid

T_1 = T_2, v_2=v_1

The equation would turn out as

\Delta S = C_p ln1-ln1

<em>Therefore the entropy change of the ideal gas is 0</em>

Into the surroundings we have that

\Delta S = \frac{Q}{T}

Where,

Q = Heat Exchange

T = Temperature in the surrounding

Replacing with our values we have that

\Delta S = \frac{230kJ}{(30+273)K}

\Delta S = 0.76 kJ/K

<em>Therefore the increase of entropy into the surroundings is 0.76kJ/K</em>

You might be interested in
What are the benefits of using the engineering design process? combining scientific knowledge and creativity in a rigid and stru
Trava [24]

Answer:

combining scientific knowledge, careful reasoning, and artistic invention in a flexible approach to problem-solving

Explanation:

7 0
3 years ago
A wood pole with a diameter of 10 in. has a moisture content of 5%. The fiber saturation point (FSP) for this wood is 30%. The w
Mekhanik [1.2K]

Answer:

a) Δd(change in wood diameter) = 5%

b) The wood would swell since the moisture content is increasing which will also led to increase in the wood's diameter

C) new diameter (D2) = 10.5 in

Explanation:

Wood pole diameter = 10 inches

moisture content = 5%

FSP = 30%

A) The percentage change in the wood's diameter

note : moisture fluctuations from 5% to 30% causes dimensional changes in the wood but above 30% up to 55% causes no change. hence this formula can be used to calculate percentage change in the wood's diameter

Δd/d = 1/5(30 - 5)

Δd/d = 5%  

Δd = 5%

B) would the wood swell or shrink

The wood would swell since the moisture content is increasing which will also led to increase in the wood's diameter

C) The new diameter of the wood

D2 = D + D( \frac{M1}{100} )

D = initial diameter= 10 in , M1 = initial moisture content = 5%

therefore D2 = 10 + 10( 5/100 )

new diameter (D2) = 10.5 in

5 0
2 years ago
blank lines are used to see inside the product?blank lines are used to see inside the product what are they called ​
mixer [17]

Answer:

Do you have anymore information about this?

7 0
2 years ago
Between chain, belt and gear drive, which causes more friction?​
loris [4]

Answer:

All of them cause friction

Explanation:

google

6 0
2 years ago
How high a building could fire hoses effectively spray from the ground? Fire hose pressures are around 1 MPa. (It is also said t
Mrac [35]

Answer:

z_{2} = 91.640\,m

Explanation:

The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

\frac{P_{1}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}= z_{2}+\frac{P_{2}}{\rho\cdot g}

The velocity of water delivered by the fire hose is:

v_{1} = \frac{(300\,\frac{gal}{min} )\cdot(\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot (0.3\,m)^{2}}

v_{1} = 0.267\,\frac{m}{s}

The maximum height is cleared in the Bernoulli's equation:

z_{2}= \frac{P_{1}-P_{2}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}

z_{2}= \frac{1\times 10^{6}\,Pa-101.325\times 10^{3}\,Pa}{(1000\,\frac{kg}{m^{3}} )\cdot(9.807\,\frac{m}{s^{2}} )} + \frac{(0.267\,\frac{m}{s} )^{2}}{2\cdot (9.807\,\frac{m}{s^{2}} )}

z_{2} = 91.640\,m

7 0
3 years ago
Other questions:
  • While discussing what affects the amount of pressure exerted by the brakes: Technician A says that the shorter the line, the mor
    14·1 answer
  • a 120 volt,13 watts fluorescent light bulb is operated from 6pm until 10pm every day the cost per kilo watt hour is $0.07. what
    11·1 answer
  • Infinitivo de vivia kkk xd
    14·1 answer
  • Give four effects of water hammer.​
    6·1 answer
  • A fluid of specific gravity 0.96 flows steadily in a long, vertical 0.71-in.-diameter pipe with an average velocity of 0.90 ft/s
    5·2 answers
  • Which of the following is correct oil viscosity for hybrid electric vehicle?
    10·1 answer
  • In a surface grinding operation, the wheel diameter = 8.0 in, wheel width = 1.0 in, wheel speed = 6000 ft/min, work speed = 40 f
    9·1 answer
  • A wine aerator is a small, in-bottle, hand-held pour-through or decantor top device using the venturi effect for aerating the wi
    9·1 answer
  • Sawzall® is another term commonly applied to?
    12·1 answer
  • What are the best collages for architectural learning?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!