The three previous manufacturing revolutions that Mr. Scalabre mentioned and their year of occurrence are:
- The steam engine in the mid-19th Century
- The mass-production model in the early 20th Century
- The first automation wave in the 1970s
<h3>What is a Manufacturing Revolution?</h3>
This refers to the process of change from a handicraft economy to industry production-based production.
Hence, we can see that Mr. Scalabre believes we are not growing in productivity because there has not been enough automation to perform the tasks needed.
The effect of robotics is making an impact on productivity because a lot of complex, difficult tasks are done by machines.
3D printing has made an impact on productivity because there is a reduction in the pressing cycle and errors due to negligence are reduced.
The role the engineers have to play in the next revolution is that they would have to produce mathematical model that can be used to produce better AIs
Read more about manufacturing revolutions here:
brainly.com/question/14316656
#SPJ1
Answer:
The value of heat transferred watt per foot length Q = 54.78 Watt per foot length.
Explanation:
Diameter of pipe = 2 in = 0.0508 m
Steam temperature
= 300 F = 422.04 K
Duct temperature
= 70 F = 294.26 K
Emmisivity of surface 1 = 0.79
Emmisivity of surface 2 = 0.276
Net emmisivity of both surfaces ∈ = 0.25
Stefan volazman constant
= 5.67 ×

Heat transfer per foot length is given by
Q = ∈
A (
) ------ (1)
Put all the values in equation (1) , we get
Q = 0.25 × 5.67 ×
× 3.14 × 0.0508 × 1 × (
)
Q = 54.78 Watt per foot.
This is the value of heat transferred watt per foot length.
Answer:
Explanation:
% Clears variables and screen
clear; clc
% Asks user for input
n = input('Total number of objects: ');
r = input('Size of subgroup: ');
% Computes and displays permutation according to basic formulas
p = 1;
for i = n - r + 1 : n
p = p*i;
end
str1 = [num2str(p) ' permutations'];
disp(str1)
% Computes and displays combinations according to basic formulas
str2 = [num2str(p/factorial(r)) ' combinations'];
disp(str2)
=================================================================================
Example: check
How many permutations and combinations can be made of the 15 alphabets, taking four at a time?
The answer is:
32760 permutations
1365 combinations
==================================================================================
Answer:
False
Explanation:
The government decides the productions.
Complete Question
The complete question is shown on the first uploaded image
Answer:
a) 
b) 
Explanation:
The explanation is shown on the second and third uploaded image