1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zubka84 [21]
3 years ago
8

List two reasons why machined parts often require a high degree of precision.

Engineering
1 answer:
Gekata [30.6K]3 years ago
3 0

Explanation:

Precision machining is a subtractive process used in cases where material needs to be removed from a raw product to create the finished product. Precision machining can be used to create a wide variety of products, items, and parts for any number of different objects and materials. These parts usually require tight tolerances variation from nominal dimensions and from part to part, which means that there is not much room for error in the production of the piece. Repeatability and well-controlled tolerances are hallmarks of precision machining. Components, parts and finished durable products that are designed to maintain extremely tight tolerance margins and a high degree of durability are essential and common drivers for utilization of precision machining. For example, parts that need to work together as part of a machine may need to always align within a certain margin of 0.01mm to 0.05mm. Precision engineering and machining help to ensure these parts can not only be made precisely but can be produced with this level of accuracy over and over again.

You might be interested in
5. Which of the following is false about onStep?
katovenus [111]

The false statement about onStep is: B. The default number of steps per second is 30.

<h3>What is an onStep?</h3>

An onStep can be defined as a computerized telescope goto controller that is designed and developed to <u>animate shapes</u> while using it on a variety of mounting systems such as forks.

<h3>The characteristics of an onStep.</h3>

In Engineering, some of the characteristics that are associated with an onStep include the following:

  • The onStep function can be called without user input.
  • It can be used to animate shapes without user input.
  • It only runs a certain number of times.

In conclusion, the default number of steps per second for onStep isn't 30.

Read more on onStep here: brainly.com/question/25619349

7 0
2 years ago
If an imbalance occurs, the _
pochemuha

A. AFGI is the answer for this question.

7 0
3 years ago
How much horse power does a Lamborghini have
statuscvo [17]
The Lamborghini SCV12 has 830 horse power.
4 0
2 years ago
Read 2 more answers
(a) The lower yield point for an iron that has an average grain diameter of 1 x 10-2 mm is 230 MPa. At a grain diameter of 6 x 1
olya-2409 [2.1K]

Answer:

The answer is "4.35 \times 10^{-3}\  mm and 157.5 MPa".

Explanation:

In point A:

The strength of its products with both the grain dimension is linked to this problem. This formula also for grain diameter of 310 MPA is represented as its low yield point  

y =  yo + \frac{k}{\sqrt{x}}

Here y is MPa is low yield point, x is mm grain size, and k becomes proportionality constant.  

Replacing the equation for each condition:  

y = y_o + \frac{k}{\sqrt{(1 \times 10^{-2})}}\\\\\ \ \ \ \ \ \ 230 = yo + 10k\\\\ y = yo + \frac{k}{\sqrt{(6\times 10^{-3})}}\\\\275 = yo + 12.90k

People can get yo = 275 MPa with both equations and k= 15.5 Mpa mm^{\frac{1}{2}}.

To substitute the answer,  

310 = 275 + \frac{(15.5)}{\sqrt{x}}\\\\x = 0.00435 \ mm = 4.35 \times 10^{-3}\  mm

In point b:

The equation is \sigma y = \sigma 0 + k y d^{\frac{1}{2}}

equation is:

75 = \sigma o+4 ky \\\\175 = \sigma o+12 ky\\\\ky = 12.5 MPa (mm)^{\frac{1}{2}} \\\\ \sigma 0 = 25 MPa\\\\d= 8.9 \times 10^{-3}\\\\d^{- \frac{1}{2}} =10.6 mm^{-\frac{1}{2}}\\

by putting the above value in the formula we get the \sigma y value that is= 157.5 MPa

5 0
2 years ago
A gas within a piston–cylinder assembly undergoes an isothermal process at 400 K during which the change in entropy is 20.3 kJ/K
Mashcka [7]

Answer:

W= 8120 KJ

Explanation:

Given that

Process is isothermal ,it means that temperature of the gas will remain constant.

T₁=T₂ = 400 K

The change in the entropy given ΔS = 20.3 KJ/K

Lets take heat transfer is Q ,then entropy change can be written as

\Delta S=\dfrac{Q}{T}

Now by putting the values

20.3=\dfrac{Q}{400}

Q= 20.3 x 400 KJ

Q= 8120 KJ

The heat transfer ,Q= 8120 KJ

From first law of thermodynamics

Q = ΔU + W

ΔU =Change in the internal energy ,W=Work

Q=Heat transfer

For ideal gas ΔU  = m Cv ΔT]

At constant temperature process ,ΔT= 0

That is why ΔU  = 0

Q = ΔU + W

Q = 0+ W

Q=W= 8120 KJ

Work ,W= 8120 KJ

8 0
3 years ago
Other questions:
  • The y-component of velocity for a certain 2-D flow field is given as u = 3xy + x2 . Determine the x-component of velocity if the
    12·1 answer
  • What is kirchoff's current law?​
    10·2 answers
  • A simply supported wood roof beam is loaded with single point dead and roof live loads applied at midspan (PD = 400 lb, PLr = 16
    9·1 answer
  • james wants to qualify for icp are and licensure. Which degree would be required in order to qualify for a two year master of ar
    15·1 answer
  • WHAT IS THE MOST POWERFUL PART IN A CAR
    13·2 answers
  • Two previously undeformed rod-shaped specimens of copper are to be plastically deformed by reducing their cross-sectional areas.
    14·1 answer
  • Describe how to use cleaning tools and equipment safely and properly
    6·1 answer
  • What is government role in the modern American version of capitalism
    11·1 answer
  • You are using a Jupyter Notebook to explore data in a DataFrame named productDF. You want to write some inline SQL by using the
    8·1 answer
  • Please help me on this it’s due now
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!