Correct answer choice is:
D. A continuous transmission of energy from one location to the next.
Explanation:
Waves include the carrier of energy without the carrier of matter. In outcome, a wave can be characterized as a change that progresses into a medium, carrying energy from one spot (its source) to different spot without carrying matter.
Answer: Wavelength is the measure of the length of a complete wave cycle. The velocity of a wave is the distance traveled by a point on the wave. In general, for any wave the relation between Velocity and Wavelength is proportionate. It is expressed through the wave velocity formula.
Explanation: For any given wave, the product of wavelength and frequency gives the velocity. It is mathematically given by wave velocity formula written as-
V=f×λ
Where,
V is the velocity of the wave measure using m/s.
f is the frequency of the wave measured using Hz.
λ is the wavelength of the wave measured using m. Velocity and Wavelength Relation
Amplitude, Frequency, wavelength, and velocity are the characteristic of a wave. For a constant frequency, the wavelength is directly proportional to velocity.
Given by:
V∝λ
Example:
For a constant frequency, If the wavelength is doubled. The velocity of the wave will also double.
For a constant frequency, If the wavelength is made four times. The velocity of the wave will also be increased by four times.
Hope you understood the relation between wavelength and velocity of a wave. I truely hope this helps you out tho! Goodluck!
Maybe you can divide the volts its twelve if you do that but itll show you how much to double it by
Without counting wind resistance, They will both reach the ground at the same time. If we apply the concept of kinematics, such as the equation vf^2=vi^2 + 2ad. This equation doesn't count how big or how heavy the mass is, it only focuses on how fast where they in the start and how far are both of them from the ground. So if they both have the same distance and same initial veloctity, then they will reach the ground at the same time.
For example, Try dropping a pen and a paper(Vertically) at the same height, you'll see they'll reach the ground at the same time.
If you count wind resistance, the heavier ball will hit the ground faster, because the air molecules will resist the lighter ball compared to the heavier ball.