1) 15 / 12 = 1.25 ratio
2) to increase acceleration 1.25 times (with same F, or same engine) you have to lower mass 1.25 times
3) 1515/1.25 = 1212 kg
choose A
Answer:
2/R*sqrt (g*s*sin(θ)) = w
Explanation:
Assume:
- The cylinder with mass m
- The radius of cylinder R
- Distance traveled down the slope is s
- The angular speed at bottom of slope w
- The slope of the plane θ
- Frictionless surface.
Solution:
- Using energy principle at top and bottom of the slope. The exchange of gravitational potential energy at height h, and kinetic energy at the bottom of slope.
ΔPE = ΔKE
- The change in gravitational potential energy is given as m*g*h.
- The kinetic energy of the cylinder at the bottom is given as rotational motion: 0.5*I*w^2
- Where I is the moment of inertia of the cylinder I = 0.5*m*R^2
We have:
m*g*s*sin(θ) = 0.25*m*R^2*w^2
2/R*sqrt (g*s*sin(θ)) = w
- The angular velocity depends on plane geometry θ , distance travelled down slope s, Radius of the cylinder R , and gravitational acceleration g
3260÷4=815 which is you average seed
Answer:
(a) The announcer's claim is incorrect because the divers enter at a speed of 20.4 and not 25 m/s as announced
(b) it’s possible for a diver to enter the water with the velocity of 25 m/s if he has initial velocity of 14.4 m/s. The upward initial velocity can’t be physically attained
Explanation:
(a)
To find the final velocity
for an object traveling distance h taking the initial vertical component of velocity as
the kinematics equation is written as
where a is acceleration
Substituting g for a where g is gravitational force value taken as 9.81

Since the initial velocity is zero, we can solve for final velocity by substituting figures, note that 70 ft is 21.3 m for h
= 20.44275
Therefore, the divers enter with a speed of 20.4 m/s
The announcer's claim is incorrect because the divers enter at a speed of 20.4 and not 25 m/s as announced
(b)
The divers can enter water with a velocity of 25 m/s only if they have some initial velocity. Using the kinematic equation

Since we have final velocity of 25 m/s


= 14.390761 m/s
Therefore, it’s possible for a diver to enter the water with the velocity of 25 m/5 if he has initial velocity of 14.4 m/s
In conclusion, the upward initial velocity can’t be physically attained
Answer:
<em>The volume of water is 3.5 cubic meter</em>
Explanation:
<u>Density
</u>
The density of a substance or material is the mass per unit volume. The density varies with temperature and pressure.
The formula to calculate the density of a substance of mass (m) and volume (V) is:

We are given the density of water as
.It's required to find the volume of m=3,500 kg of water. Solving for V:



The volume of water is 3.5 cubic meter