1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
11

Assume you are driving 20 mph on a straight road. Also, assume that at a speed of 20 miles per hour, it takes 100 feet to stop.

If you were to increase your speed to 60 miles per hour, your stopping distance is now:
Physics
2 answers:
Viefleur [7K]3 years ago
8 0

Answer:900  feet

Explanation:

Given

Velocity \left ( V_1\right )=20 mph\approx 29.334 ft/s

it take 100 feet to stop

Using Equation of motion

v^2-u^2=2as

where

v,u=Final and initial velocity

a=acceleration

s=distance moved

0-\left ( 29.334\right )^2=2\left (-a\right )\left ( 100\right )

a=\frac{29.334^2}{2\times 100}=4.302 ft/s^2

When velocity is 60 mph\approx 88.002 ft/s

v^2-u^2=2as

0-\left ( 88.002\right )^2=2\left ( -4.302\right )\left ( s\right )

s=900.08 feet

Rus_ich [418]3 years ago
3 0

Answer:

900 feet          

Explanation:

Initial Speed, u₁ = 20 mph

Stopping distance, s₁ = 100 feet

Initial Speed, u₂ = 60 mph

Then, the stopping distance can be calculated using the third equation of motion:

s=\frac{v^2-u^2}{2a}

There would be same acceleration and final velocity would be zero (v=0).

s=\frac{0-u^2}{2a}\\ \frac{s_2}{s_1}=\frac{u_2^2}{u_1^2}\\s_2= 100 ft\frac{(60)^2}{(20)^2} =900 feet

You might be interested in
Ksp for agbr is 5x10-13. what is the maximum concentration of silver ion that you can have in a 0.1 m solution of nabr?
liberstina [14]

Answer : The maximum concentration of silver ion is 5\times 10^{-12}m

Solution : Given,

K_{sp} for AgBr = 5\times 10^{-13}

Concentration of NaBr solution = 0.1 m

The equilibrium reaction for NaBr solution is,

NaBr(aq)\rightleftharpoons Na^++Br^-

The concentration of NaBr solution is 0.1 m that means,

[Na^+]=[Br^-]=0.1m

The equilibrium reaction for AgBr is,

                          AgBr\rightleftharpoons Ag^++Br^-

At equilibrium                     s       s

The expression for solubility product constant for AgBr is,

K_{sp}=[Ag^+][Br^-]

The concentration of Ag^+ = s

The concentration of Br^- = 0.1 + s

Now put all the given values in K_{sp} expression, we get

5\times 10^{-13}=(s)(0.1+s)

By rearranging the terms, we get the value of 's'

s=5\times 10^{-12}m

Therefore, the maximum concentration of silver ion is 5\times 10^{-12}m.

4 0
2 years ago
Read 2 more answers
The graph represents the reaction 2H2 + 02 32H20 as it reaches
Alex

Answer:

C and D

Explanation:

5 0
3 years ago
Read 2 more answers
How is tidal energy obtained
yKpoI14uk [10]
Under water turbans that are placed at the above to middle of the ocean they are used to capture kinetic motion
7 0
3 years ago
What does hydraulic mean?
Harrizon [31]

Answer:

denoting, relating to, or operated by a liquid moving in a confined space under pressure.

4 0
2 years ago
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
Other questions:
  • An air mass that forms over Arizona and New Mexico will be?
    9·1 answer
  • A 50-kilogram student is running and has 225 joules of kinetic energy.What is the students speed in meters per second
    11·2 answers
  • (a) How much gravitational potential energy (relative to the ground on which it is built) is stored in an Egyptian pyramid, give
    8·1 answer
  • Sound is a _____ wave
    11·1 answer
  • Humans have three types of cone cells in their eyes, which are responsible for color vision. Each type absorbs a certain part of
    11·1 answer
  • Now assume that the frictional force f is not at its maximum value. What is the relation between the torque Ï„ applied to each w
    10·2 answers
  • 8. A car travels at a constant velocity of 70 mph for one hour. By the end of the second hour, the car’s velocity was 60 mph. At
    10·1 answer
  • A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 V. It is used to charge two storage batt
    15·1 answer
  • What is one way homeostasis benefits living organisms?
    15·2 answers
  • Plasmodium belong to which kingdom​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!